MIGRATORY SPECIES
in the Gulf of Mexico
Large Marine Ecosystem

EXECUTIVE SUMMARY

Jorge Brenner, Carly Voight
and David Mehlman
Illustrations by Beth Zaiken

The Nature Conservancy
ACKNOWLEDGEMENTS

This project was made possible due to the generous financial support of the Lyda Hill Foundation and The Nature Conservancy’s Gulf of Mexico Program and Texas Chapter. The authors would like to thank the guidance provided by this project’s steering committee formed by Dr. John ‘Wes’ Tunnell of the Harte Research Institute for Gulf of Mexico Studies (HRI) at Texas A&M University-Corpus Christi, Dr. Billy Causey of the Southern Region of National Marine Sanctuaries of the National Oceanic and Atmospheric Administration (NOAA), and Dr. Rodolfo Claro, formerly of the Institute of Oceanology in Cuba. The authors would like to specially acknowledge the contributions of the scientists and institutions that supported this project by providing datasets, comments, and reviews essential to the development of these analyses and this report (for a complete list of collaborators see full technical report).

Suggested citation for this report:
Introduction

Purpose of the Study
Understanding the migratory pathways of fish, sea turtles, marine mammals, and birds is critical not only to species survival, but also to the overall health of the Gulf of Mexico Large Marine Ecosystem. In this report, The Nature Conservancy synthesized information about the pathways of a variety of migratory species in the Gulf of Mexico Large Marine Ecosystem. Our goal is to increase understanding of the migratory strategies and corridors of representative migratory fish, sea turtle, marine mammal, and bird species in the Gulf. Our hope is that information presented in this study will inform and motivate government decision-makers to support further research on migratory pathways in the Gulf and to enact measures for conservation of those pathways to enable the survival of individual species and the protection of the overall health of the Gulf of Mexico ecosystem.

Biological Migration
Biological migration is a highly specialized behavior with origins in the natural selection of species. Migratory pathways range from regional to long-distance movements, typically on a seasonal basis. Although some of the threats to these pathways are well understood, other factors that harm or reduce migratory populations remain poorly and incompletely documented. Migratory species often move across national boundaries, and, therefore, through different governance and political frameworks. This makes their management a complex process.

The Gulf of Mexico Large Marine Ecosystem
The Gulf of Mexico Large Marine Ecosystem (LME) comprises the primary study area of this report. This includes areas from estuarine to marine waters from the west coast of Florida to Texas in the United States, from Tamaulipas to the northeastern part of the Yucatán Peninsula in Mexico, and along the northwestern coast of Cuba.

Plants and Animals in the Gulf of Mexico
The Gulf of Mexico, with 15,419 documented species, (Felder and Camp 2009), ranks as one of the top five ocean areas globally for plants and animals (Ellis et al. 2011). The International Union for Conservation of Nature (IUCN) has listed 52 species of vertebrates that live in the Gulf on the Red List of Threatened Species with a status of critically endangered, endangered, or vulnerable (IUCN 2011). Species migrations play a significant, but not well understood, role in maintaining the health of the Gulf ecosystem.
Our Approach to Mapping Migratory Pathways

Study Process
The Conservancy synthesized data for 26 migratory species of fish, sea turtles, marine mammals, and birds (Table 1). This included gathering existing information from more than 100 biologists and researchers from the U.S., Mexico, Canada, and Cuba. The Conservancy compiled and organized thousands of observation points, hundreds of satellite movement tracks, many spawning and feeding aggregation sites, and numerous spatial threats from a multitude of sources. Using this information, we determined partial migratory corridors, areas of high movement density, occurrence hotspots, aggregations and stopovers, and high threat areas for each species and combined groups of species.

OCCURRENCES AND DISTRIBUTIONS
Point occurrence records were gathered from multiple international and national publicly accessible databases and from collaborating researchers and institutions. Occurrences were aggregated into 20-by-20-kilometer cells across the study area to generate synthesis products of the observation coverage and human survey efforts. The result visually depicts areas in the Gulf with the highest concentrations of records, and when overlaid with species’ distributions, it illustrates potential data gaps.

MIGRATORY CORRIDORS AND MOVEMENT DENSITY
Animal movement tracking data, generated using satellite tags and geolocator devices (see Box 1) attached to individual animals, were gathered from the available information on migrating animals (10 marine species and three bird species). Although we made a large effort to gather tracking data for these species, the amount of data, and thus the accuracy of our depiction of pathways, varies greatly depending on the technology used, the species and the location. We recognize that additional pathways or branches of their migratory corridors most likely exist for each species and that the results presented in this report constitute only preliminary and partial corridors.
STUDIED FISH

BULL SHARK
Carcharhinus leucas
Large coastal sharks that use estuarine habitats as nurseries for their young. They can invade freshwater streams in search for food.

DOLPHIN FISH
Coryphaena hippurus
Open-sea predators that use floating objects and sargassum mats for cover as juveniles, and to find prey as adults.

GAG GROUPER
Mycteroperca microlepis
Reef fish for which over-fishing has reduced the proportion of males to females in the Gulf from around 20% to less than 5%.

GULF STURGEON
Acipenser oxyrinchus
Can live up to 60 years but they now face significant loss of habitat due to dams on the rivers they use for spawning.

ATLANTIC TARPON
Megalops atlanticus
Highly prized coastal trophy fish facing significant losses to juvenile nursery habitats and its populations.

GULF MENHADEN
Brevoortia patronus
The largest fishery by volume in the Gulf of Mexico, they spend the majority of their adult lives nearshore, forming large schools near the surface.

BILL SHARK
Carcharhinus leucas
Large coastal sharks that use estuarine habitats as nurseries for their young. They can invade freshwater streams in search for food.

MUTTON SNAPPER
Lutjanus analis
Inshore species associated with coastal habitats such as seagrass beds, mangroves, and estuaries; also has some offshore populations.

GULF STURGEON
Acipenser oxyrinchus
Can live up to 60 years but they now face significant loss of habitat due to dams on the rivers they use for spawning.

BLUEFIN TUNA
Thunnus thynnus
Northwestern population relies on the Gulf to spawn every spring. The Deepwater Horizon oil spill covered some of the spawning and juvenile development areas.

WHALE SHARK
Rhincodon typus
The largest fish in the ocean, more than 500 gather every year in the waters of the Yucatán Peninsula, the largest documented aggregation in the world.

BLUE MARLIN
Makaira nigricans
Prized offshore trophy fish. Particularly vulnerable to bycatch, believed to be the leading source of mortality in U.S. waters.

STRIPE Bass
Rynchops niger
River damming and changes to water temperatures can isolate foraging areas from areas of good water quality, thus limiting their range in the Gulf.

ATLANTIC TARPON
Megalops atlanticus
Highly prized coastal trophy fish facing significant losses to juvenile nursery habitats and its populations.

GULF STURGEON
Acipenser oxyrinchus
Can live up to 60 years but they now face significant loss of habitat due to dams on the rivers they use for spawning.

MUTTON SNAPPER
Lutjanus analis
Inshore species associated with coastal habitats such as seagrass beds, mangroves, and estuaries; also has some offshore populations.

GULF STURGEON
Acipenser oxyrinchus
Can live up to 60 years but they now face significant loss of habitat due to dams on the rivers they use for spawning.

BLUEFIN TUNA
Thunnus thynnus
Northwestern population relies on the Gulf to spawn every spring. The Deepwater Horizon oil spill covered some of the spawning and juvenile development areas.

WHALE SHARK
Rhincodon typus
The largest fish in the ocean, more than 500 gather every year in the waters of the Yucatán Peninsula, the largest documented aggregation in the world.

BLUE MARLIN
Makaira nigricans
Prized offshore trophy fish. Particularly vulnerable to bycatch, believed to be the leading source of mortality in U.S. waters.

STRIPE Bass
Rynchops niger
River damming and changes to water temperatures can isolate foraging areas from areas of good water quality, thus limiting their range in the Gulf.
Table 1. Species assessed and their conservation status in North America.

The following table synthesizes migratory patterns of 26 Gulf species and highlights the threat to those patterns.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>SUBGROUP</th>
<th>SPECIES</th>
<th>SCIENTIFIC NAME</th>
<th>SUBSPEICES</th>
<th>ENDEMIC</th>
<th>GLOBAL</th>
<th>USA</th>
<th>MEXICO</th>
<th>CURA</th>
<th>CANADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>Coastal</td>
<td>Atlantic tarpon</td>
<td>Megalops atlanticus</td>
<td></td>
<td>VU</td>
<td>G5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bull shark</td>
<td>Carcharhinus leucas</td>
<td></td>
<td>NT</td>
<td>G5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gag grouper</td>
<td>Mycteroperca microlepis</td>
<td></td>
<td>LC</td>
<td>GNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gulf menhaden</td>
<td>Brevoenia patronus</td>
<td></td>
<td>VU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gulf sturgeon</td>
<td>Acipenser oxyrinchus</td>
<td></td>
<td>NT</td>
<td>G3T2</td>
<td>TH</td>
<td>Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutton snapper</td>
<td>Lutjanus analis</td>
<td></td>
<td>VU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Striped bass</td>
<td>Morone saxatilis</td>
<td></td>
<td>LC</td>
<td>G5</td>
<td>SC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelagic</td>
<td></td>
<td>Blue marlin</td>
<td>Makaira nigricans</td>
<td></td>
<td>VU</td>
<td>GNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bluefin tuna</td>
<td>Thunnus thynnus</td>
<td></td>
<td>EN</td>
<td>GNR</td>
<td></td>
<td>EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dolphin fish</td>
<td>Coryphaena hippurus</td>
<td></td>
<td>LC</td>
<td>GNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whale shark</td>
<td>Rhincodon typus</td>
<td></td>
<td>VU</td>
<td>GNR</td>
<td></td>
<td>TH</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Sea Turtle</td>
<td>Coastal</td>
<td>Green</td>
<td>Chelonia mydas</td>
<td></td>
<td>EN</td>
<td>G3</td>
<td>EN**</td>
<td>EN</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kemp’s ridley</td>
<td>Lepidochelys kempi</td>
<td></td>
<td>CR</td>
<td>G1</td>
<td>EN</td>
<td>EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loggerhead</td>
<td>Caretta caretta</td>
<td></td>
<td>EN</td>
<td>G3</td>
<td>TH***</td>
<td>EN</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Pelagic</td>
<td>Leatherback</td>
<td>Dermochelys coriacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Mammal</td>
<td>Coastal</td>
<td>West Indian manatee</td>
<td>Trichechus manatus</td>
<td></td>
<td>latirostris (Florida), manatus (Caribbean)</td>
<td>VU</td>
<td>G2</td>
<td>EN</td>
<td>EN</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm whale</td>
<td>Physeter macrocephalus</td>
<td></td>
<td>VU</td>
<td>G3G4</td>
<td>EN</td>
<td>SP</td>
<td>NAR</td>
<td></td>
</tr>
<tr>
<td>Bird</td>
<td>Neartic-Neotropical</td>
<td>Broad-winged hawk</td>
<td>Buteo platypterus</td>
<td></td>
<td>platypterus, rubosenis (Cuba), brunnescens (Puerto Rico)</td>
<td>LC</td>
<td>G5</td>
<td>SP</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Neartic-Neotropical</td>
<td>Cerulean warbler</td>
<td>Setophaga cerulea</td>
<td></td>
<td></td>
<td>G4</td>
<td>II</td>
<td>EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neartic-Neotropical</td>
<td>Osprey</td>
<td>Pandion haliaetus</td>
<td></td>
<td>carolinesis (migratory), ridgways (Caribbean resident)</td>
<td>LC</td>
<td>G5</td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neartic-Neotropical</td>
<td>Wood thrush</td>
<td>Hylocichla mustelina</td>
<td></td>
<td></td>
<td>NT</td>
<td>G5</td>
<td>II</td>
<td>TH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neartic-Temperate</td>
<td>Black rail</td>
<td>Laterallus jamaicensis</td>
<td></td>
<td></td>
<td>NT</td>
<td>G3G4</td>
<td>*</td>
<td>EN</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Neartic-Temperate</td>
<td>Black skimmer</td>
<td>Rynchops niger</td>
<td></td>
<td></td>
<td>LC</td>
<td>G5</td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Neartic-Temperate</td>
<td>Redhead</td>
<td>Aythya americana</td>
<td></td>
<td></td>
<td>LC</td>
<td>G5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neartic-Temperate</td>
<td>Whooping crane</td>
<td>Grus americana</td>
<td></td>
<td></td>
<td>EN</td>
<td>G1</td>
<td>EN</td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>Pelagic</td>
<td>Audubon’s shearwater</td>
<td>Puffinus iheringi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note 1 Endemic is the Gulf of Mexico.

1. IUCN Red List (Threatened species): CR = critically endangered, EN = endangered, VU = vulnerable, NT = near threatened, LC = least concern.
6. The list of the Council of Ministries of the Species of Special Significance.

THE NATURE CONSERVANCY | GULF OF MEXICO

MIGRATORY SPECIES IN THE GULF: EXECUTIVE SUMMARY

THREAT ANALYSIS
Although fish, sea turtles, marine mammals, and birds in the Gulf of Mexico face numerous threats, we identified specific threats that may represent barriers to completing their migratory cycles. These threats were identified, weighted, and in some cases, mapped using information from recovery plans, management plans, threat assessments, the scientific literature and expert review. Examples include: By-catch and wetland and mangrove loss for marine fish; dams for anadromous fish; vessel collisions for marine mammals; wetland and forest loss and the growth of urban areas for birds; longline fishing and beach light pollution for sea turtles.

Figure 2. Sea turtle threats.

Box 1. Animal movement tracking techniques and tools.
The vastness of the ocean limits the ability to observe its plants and animals. The table below shows the online movement tools that are currently available to track marine animals in the Gulf of Mexico region.

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>LINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Telemetry Network - Integrated Ocean Observing System</td>
<td>Acoustic/Satellite</td>
<td>oceanview.pfeg.noaa.gov/ATN/</td>
</tr>
<tr>
<td>GulfTOPP - Tagging of Pelagic Predators*</td>
<td>Satellite</td>
<td>gulftopp.org</td>
</tr>
<tr>
<td>Guy Harvey Research Institute - Nova Southeastern University</td>
<td>Satellite</td>
<td>nse.edu/oceans/gfri</td>
</tr>
<tr>
<td>Motus Wildlife Tracking System</td>
<td>Radio</td>
<td>motus-wts.org</td>
</tr>
<tr>
<td>Movebank</td>
<td>All</td>
<td>movebank.org</td>
</tr>
<tr>
<td>OBIS SEAMAP - Duke University</td>
<td>Satellite</td>
<td>seamap.env.duke.edu</td>
</tr>
<tr>
<td>Ocean Tracking Network</td>
<td>Acoustic</td>
<td>oceantrackingnetwork.org</td>
</tr>
<tr>
<td>OCEARCH**</td>
<td>Satellite</td>
<td>ocearch.org</td>
</tr>
<tr>
<td>RJ Dunlap Marine Conservation Program - University of Miami</td>
<td>Satellite</td>
<td>rjd.miami.edu/education/virtual-learning</td>
</tr>
<tr>
<td>Seaturtle.org</td>
<td>Satellite</td>
<td>seaturtle.org/tracking/</td>
</tr>
<tr>
<td>Wildlife Tracking***</td>
<td>Satellite</td>
<td>wildlife-tracking.org/</td>
</tr>
</tbody>
</table>

Note: *GulfTOPP site is a private site for researchers working with NOAA in tracking marine vertebrates for NRDA in the Gulf of Mexico
**OCEARCH has an app for smart phones
***Wildlife Tracking is a service of seaturtle.org

Figure 2. Sea turtle threats.
Key Findings

This assessment synthesizes large amounts of existing information and spatial data to identify the migratory pathways of fish, sea turtles, marine mammals, and bird species in the Gulf of Mexico LME. Key findings relevant to the management of migratory species in the Gulf are summarized below.

- Overall the study confirms that the Gulf of Mexico LME is an exceptionally important region for the migration of marine animals and birds and that these migratory pathways are critical components of the Gulf as a whole and connected ecosystem.
- There are four areas of the Gulf that are particularly significant migratory “blueways”, making them a focus for future conservation efforts. These are: the area off the Mississippi River delta; south Florida and the Florida Strait; the northern area of the Yucatán Peninsula; and northwestern Cuba (see Figure 3).

Results of this species corridor assessment suggest that some species of coastal fish, sea turtles, and marine mammals may use deeper parts of the ocean to migrate and complete specific phases of their life cycles, such as reproduction and foraging: In addition, pelagic species of fish and sea turtles may come to near-shore waters and estuaries as part of their life cycles.

Less than 1 percent of the identified aquatic corridors, and less than 20 percent of the area of priority migratory bird stopovers, are covered under existing protected and other managed areas in the three countries bordering the Gulf.

Most of the knowledge is also biased toward species that have an economic value, such as those that are part of commercial and recreational fisheries in North America.
Multiple species have populations that limit their ranges in the Gulf to specific areas, including the sperm whale (resident population in the northern Gulf), and the whooping crane wintering on the Texas coast. These populations may require special management to maintain their viability. Examples of species with populations partially dependent on the Gulf as habitat are bluefin tuna, Kemp’s ridley sea turtle, and Redhead. Due to the specific habitat requirements and resulting limited ranges of these species, their populations are especially vulnerable to threats occurring in the Gulf.

Migrations in the Gulf occur constantly throughout the year. While the majority of birds migrate regularly during the spring and fall between their breeding and wintering areas, other species have more varied timing for their migratory movements. Fish species migrate throughout the year; sea turtles primarily migrate in late spring and summer and marine mammals migrate primarily during the winter.

The Deepwater Horizon oil spill disaster in April of 2010 created a temporary major disruption of the migratory patterns of a variety of marine animals and birds migrating through the northern Gulf. The spill left beached, superficial, dissolved, and deep deposits of oil in the water.

There is a significant gap in knowledge of the southern Gulf of Mexico. The majority of the available knowledge of species occurrence, distribution and movements is biased toward the northern Gulf and the United States.

Figure 5. Summary of observations of black skimmer. Note the disproportion of data available in domestic and international databases for the northern (>99%) and southern (<1%) Gulf of Mexico regions.

Figure 6. Bluefin tuna summary of observations and distribution.
The so-called dead zone (low oxygen water) south and generally west of the mouth of the Mississippi River is a recurrent summer event and potential threat to maintaining migratory pathways that requires further investigation.

There are few multinational agreements that provide operational protection to migratory species across the region, despite the wide-ranging character of many important species. Although a number of international and national laws and treaties exist to conserve plants and animals, including organisms that migrate, the main focus of conservation implementation remains management of national priorities within national boundaries.

The main threats to migratory species of fish and sea turtles are from fisheries by-catch and habitat loss. Although the latter is a major threat to manatees and birds, the main threat to the marine mammals assessed is vessel collision, and the main threat to the bird species assessed is the hazard of traversing urban areas and habitat loss. Whale shark threats are very similar to those of the large whales.

Figure 7. Migration timing of a) sea turtles, and b) birds in the Gulf of Mexico region.

A) SEA TURTLES

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>LIFESTAGE</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Adult</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Juvenile</td>
<td></td>
</tr>
<tr>
<td>Kemp’s ridley</td>
<td>Adult</td>
<td></td>
</tr>
<tr>
<td>Kemp’s ridley</td>
<td>Juvenile</td>
<td></td>
</tr>
<tr>
<td>Leatherback</td>
<td>Adult</td>
<td></td>
</tr>
<tr>
<td>Loggerhead</td>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

In foraging areas / *At nesting beaches* / *Migration period*

This table represents a simplified account of migratory timing for sea turtle species in the Gulf of Mexico. Adult females will not nest or migrate every year. For those females that do nest, the time of nesting varies. For example, some Kemp’s ridley sea turtles start migrating in March and nest on beaches in late April, while others may migrate in April and nest in May.

Figure 8. Sperm whale partial corridor and threats. The straight-line features represent the contribution of navigational shipping lanes to their threats.
GREEN
Chelonia mydas
The largest of all hard-shelled
sea turtles, and the only
marine turtles whose adults
exclusively eat plants.

LEATHERBACK
Dermochelys coriacea
408 autopsy records found
the presence of plastic in 34%
of deceased leatherbacks, the
largest of all sea turtles.

LOGGERHEAD
Caretta caretta
In the southeastern U.S., about
80% of loggerhead nesting occurs
in six Florida counties. Bright lights
on highly developed beaches can
confuse nighttime nesting habits.

KEMP’S RIDLEY
Lepidochelys kempii
Considered the smallest sea turtle
in the world. They synchronize
nurseries on specific beaches in
Tamaulipas, Mexico.

WEST INDIAN MANATEE
Trichechus manatus
Approximately 27% of manatee
deaths in Florida between 1974
and 2012 were attributed to
human-related causes.

Sperm whale
Physeter macrocephalus
The largest cetacean that migrates
primarily in the northern Gulf, where
it has a semi-resident population of
about 500 whales.

STUDIED SEA TURTLES
STUDIED MARINE MAMMALS

STUDIED BY
JOEL SARTORE, NATIONAL GEOGRAPHIC PHOTO ARK/GOTTY IMAGES
STUDIED BY
REINHARD DIRSCHERL/GOTTY IMAGES
The Way Forward

The Gulf of Mexico LME is an extraordinarily important area for marine migratory species. These migrations are critical to the interconnection of the Gulf ecosystem. Our findings have only scratched the surface of understanding animal migration in the Gulf, but we hope that they spur additional research to document the full extent of Gulf migration and identify conservation actions that protect the life cycles of a wide range of important migratory species. Particular attention is needed to the four most significant “migratory blueways” identified in this study and to determining whether additional similar locations exist in the Gulf.

Although the basic biology and distribution for many species is known, the vast majority of knowledge focuses on places and stages at which animals spend most of their time. Not enough attention has been paid to their time traveling from place to place and to the threats to their survival associated with those journeys and with the aggregations of organisms that are often part of their migratory cycles. A further bias of past research has been a focus on the coastal temperate regions, which in some cases may constitute only half or less of the life cycles of some species migrating between temperate and tropical areas. Understanding the drivers of migration, the threats encountered and seasonal interactions is imperative to increasing the viability of the populations of migratory species.

One of the first steps in assessing the migratory connectivity of populations is to be able to track their movements. New tracking technology is making it possible to assess the movements of a growing number of species (see Box 1). These tracking tools not only provide a deeper understanding of the habitats they use while migrating, they also document multiple environmental stressors (such as water quality and areas of conflict with human activities) that can influence their survival. These tools can be used to evaluate the extent to which environmental or management problems impact migratory processes.

This report highlights the need for more research that will use these new tools and other evolving science to build on the creative and successful work done by the field researchers who produced the data behind this report. More work is needed, as well, to compile the data in ways that can guide the conservation and management practices of the United States, Mexico, and Cuba to protect the exceptional biodiversity of their shared resource—the Gulf of Mexico LME.

REFERENCES

