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Key findings

» Using a computer simulation of a hypothetical longline tuna fleet,
this study demonstrates that allocating comprehensive independent
monitoring coverage across a fleet and reviewing the associated
monitoring data at random is the best option to ensure that catch data
are accurate, adequate, consistent, and unbiased.

» When monitoring coverage was anything less than 100% across the
simulated fleet, this invited opportunities for opt-in bias and behavioral
changes, which resulted in underestimates of mean catch rates and
higher annual variability in catch rate estimates.This translates into
anincreased likelihood of inaccurate estimates of market and bycatch
species populations, risking the overall sustainability of marine wildlife
populations.

» We recommend that Regional Fisheries Management Organizations
(RFMOs) and sustainability certifications adopt clear guidelines requiring
100% independent monitoring across a fleet or fishery with random
review of at least 20% of fishing activity, to ensure fisheries managers
have credible catch estimates and better visibility of fishing practices to
advance the long-term health of fish populations.
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Introduction

Electronic monitoring(EM)uses video cameras and sensors
to independently record fishing activity; the electronic
records are later reviewed as a source of information that is
independent of logbooks. As EM programs have expanded
globally over the past decade, a variety of EM coverage and
footage review strategies have emerged—shaped by fishery
characteristics, monitoring goals, species prevalence,
funding, and human capacity to perform data review.

EM has become an essential tool for meeting independent
observation requirements set by sustainability certifica-
tions such as the Marine Stewardship Council (MSC).
Likewise, since the adoption of EM standards across
various RFMOs, RFMO Members are now exploring how EM
can fulfill coverage and data submission requirements. To
meet target monitoring rates and generate representative

catch statistics, EM programs often rely on sub-sampling
methods when reviewing EM footage. However, allocation
of EM coverage and video review rate differ significantly
from traditional human observer programs, prompting

a need for clarity on how EM sampling procedures affect
fisheries data quality and accuracy.

Scientifically robust sampling of EM footage looks at a
subset of fishing activity that is representative of the
characteristics of the entire fleet. If sampling is not
representative, catch estimates may be biased and
over-or underestimate catch events and result in missed
observations of important interactions—including those
with endangered, threatened, and protected (ETP) spe-
cies. For instance, the MSC is proposing independent
observation of at least 20% of fishing events per year




for high seas operations to track statistics like the catch
rate of both market and bycatch species. In recent years,
technical guidance on minimum standards for individual
vessels with EM has been developed for key fisheries

such as longline and purse seine tuna(e.g., Murua et al.
2025); however, there is limited guidance on how cover-
age should be allocated across an entire fishery. This
opens the door for selective monitoring—where nations or
companies might unintentionally (or intentionally) monitor
only their “cleanest” 20% of vessels or trips, potentially
masking problematic fishing practices or underrepresent-
ing catch activity.

To explore this issue, we conducted a computer simula-
tion using a hypothetical tuna longline fishery informed
by the operational dynamics of real-world fishing (Brown
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et al. 2021) to assess whether different methods of
selecting fishing activities for monitoring and review
yield accurate estimates of true catch rates. We evalu-
ated three distinct monitoring and review scenarios and
analyzed their impact on the accuracy of estimated catch
rates for both market species and bycatch.

Why this matters: If monitoring is biased toward vessels or
trips within a fleet with cleaner fishing practices, regulators
and the public may be misled into believing a fishery is
performing better than it actually is. Conversely, if monitor-
ing is biased toward vessels with poor fishing practices,

the data will be skewed accordingly. This can result in
misinformed management plans and allow harmful fishing
practices to persist undetected, undermining sustainability
goals and the credibility of fisheries management systems.
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How this study was done

Simulating catch

We aimed to illustrate how different monitoring and
review strategies of fishing activity affect the accuracy of
catch rate estimates(see Box 1for terminology details).
We developed a computer simulation of a fictional
longline tuna fleet composed of 50 vessels, informed

by the operational dynamics of real-world fishing(e.qg.,
Brown et al. 2021). In our fictitious world, a fishery man-
ager must decide how to allocate monitoring and data
review resources for the upcoming year, knowing only
the number of vessels—not how much fishing effort each
vessel will exert or how much they will catch.

Fishing activity across the fleet was simulated over a
one-year period. Each vessel completed one or more
trips, with each trip consisting of a randomized number

BOX 1: important terminology

Effective fisheries management depends on
high-quality data to inform management tools
such as stock assessments and ensure regulatory
compliance. Traditionally, managers have relied on
surveys, paper logbooks, and human observers to
track catch and discards. More recently, electronic
monitoring has emerged as a cost-effective and
comprehensive alternative, using video footage to
document fishing activity for later analysis.

Because EM captures video for post-trip review
and human observers record events in real time,
these two methods entail different processes
toyield final fishing activity data. Because of
these differences, we use the following terms
intentionally throughout this study:

» Monitoring coverage refers to the proportion of
vessels, trips, or sets with either EM or human
observers present continuously collecting
fisheries data.

» Review refers to the analysis of fishing activity
that had monitoring coverage—whether video
footage or observer records—to generate final
catch estimates. Review rate refers to the
proportion of monitored fishing activity that is
used to generate final catch estimates.

of longline sets(averaging 26 sets per trip). The vari-
ability in fishing activities reflected realistic differences
intrip duration and fishing effort. In this fictitious
fishery, the catch composition varied among individual
sets, across trips, and across vessels. This variation is
representative of differences in fishing location, timing,
hook number, bait type, skill level, and/or fisher behavior
and/or knowledge.

The fishery had five types of catch events, and each
event had a different average catch rate : (1)a commonly
caught target market species(e.qg., yellowfin tuna); (2) a
commonly caught species with high variability in catch
rates across vessels, representing differences in captain
expertise; (3)a commonly caught market species with
high variability in catch rates across trips, simulating
variation in skill and flexible fishing strategies by captains
to modify bycatch; (4) a bycatch species caught less
consistently (e.g., blue shark); and(5) a rare and vulner-
able bycatch species(e.qg., green turtles). The rare event
could also represent other infrequent but significant
events such as transshipment.

These parameters were chosen to be representative of
catch rates for a range of different types of industrial
fishing activity, including longline and gillnet fisheries
(see Appendix A for details).

Simulating monitoring and review scenarios

We tested three monitoring and review scenarios that
our fictional manager could choose between if given the
guideline “20% coverage of independent monitoring".
The first two scenarios focus on EM as the monitoring
tool; the third scenario focuses on human observation
(see Monitoring Scenarios schematic on page 5). For all
scenarios, data review was of whole sets.

» EM Scenario 1: monitor 100% of vessels and review
20% of sets at random. EM was present on 100% of
vesselsin the fleet and 20% of sets were randomly
selected for review. This reflects a fleet with full
electronic monitoring coverage but limited capacity
to review EM footage.

Accurately estimating catch: an illustration of the effects of bias in independent monitoring of fisheries



EM Scenario 2: monitor 20% of vessels and review
20% of sets. EM was present on 20% of vessels and
20% of the sets that were monitored were reviewed,
representing a fleet where EM systems are installed on
a subset of vessels. The manager could select vessels
for monitoring in two ways: 1) at random or 2) biased
towards selecting vessels with lower-than-average
catch rates, simulating strategic deployment of EM on
vessels with cleaner fishing practices.

Schematic: monitoring and review scenarios

Human Observer Scenario 3: monitor and review
75% of sets on 20% of all trips. Human observers
were present on 20% of trips made by vesselsin the
fleet and 75% of the sets were analyzed, representing
limitations of human observers to analyze complete
fishing activity due to periods when they might not be
on deck, such as sleeping, eating, etc. The manager
could select trips for monitoring in two ways: 1) at ran-
dom or 2) biased toward trips with lower-than-average
catch rates, simulating behavioral changes that might
occur under observation (e.g., gear adjustments to
reduce bycatch, Benoit and Allard 2009).
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EM Scenario 1 (Sets)
Monitoring coverage: all vessels, all trips
Review: Random sets from any trip

EM Scenario 2 (Vessels)
Monitoring coverage: select vessels
Review: Select sets from monitored vessels
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Human Observer Scenario 3 (Trips)
Monitoring coverage: select trips
Review: Select sets from monitored trips
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Simulation methods

We explored whether the three fictional monitoring and
review scenarios would obtain unbiased catch rates when
applied to each of the five catch event categories. We
simulated fishing activity for the fictional fleet across
1,000 replicates. These replicates capture the range of
variation in catch rates that is possible to encounter in
afishing year. For each replicate we applied each of the
three monitoring scenarios, and allowed the manager to
allocate review in arandom or biased way.

For each catch event category across the replicates we
calculated mean bias. The percent bias was the percent
difference between the monitored catch rate and the
true catch rate. The mean bias was the mean of percent
bias across the 1,000 replicates. This metric indicates

how close each monitoring and review scenario comes
to accurately estimating the true catch rate. A mean bias
of 0% represents monitoring that is accurate on average
across many years of fishing.

In addition to mean bias, we assessed the variance in
the bias statistic. The variance represents how consis-
tent the results will be across different years of fishing.
Ideally, a monitoring and review scenario would yield
both low bias and low variance, meaning it consistently
produces accurate estimates year after year. However, a
scenario with low average bias but high variance means
that catch ratesin any single year could be well above or
well below the true catch rate. High variance is a prob-
lem for managers because it increases the chance of
spurious estimates in catch rates across multiple years
of fishing.

Results: monitoring and review

scenario findings

This scenario resulted in no bias on average across all
five catch categories and generally low variability across
replicates (Figure 1). For the market species catch
category, the consistency of results means that the
manager can be confident that the estimated catch rate
inany given year will fall within £19% of the true value.
Rare bycatch events had higher variability (+34 % of the
true value), meaning that there is a higher likelihood that
when these events occur they could be missed or over-
estimated during the 20% EM footage review process.
For example, if an average of 139 rare turtles were caught
as bycatch and 97,500 market tuna were caught by the
fleet in a given year, this monitoring scenario would have
estimated between 70-215 turtles (95% Cl)and 67,800-
134,900 tuna (95% Cl).

EM Scenario1 - Monitor 100% of vessels and review 20% of sets at random

EM Scenario 1: 100% coverage with 20% random sets
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Figure 1. Percent bias for each catch event category across simulation replicates
for Scenario 1. Points show mean bias and error bars show 95% quantiles for per-
cent bias across replicate simulations (35% of simulations fill within the bounds).
The mean bias is the amount of bias we would expect to see on average across
many years of fishing. The variability shows the range of bias values a manager
would be exposed to in data from any single year of fishing.
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EM Scenario 2 Monitor 20% of vessels and review 20% of sets

When vessels were selected at random in this scenario,
there was no bias on average but generally high vari-
ability in bias across replicates(dark green scenario).
The high variability means the manager cannot be sure
that the catch rate for any given year is accurate. For
the market species catch category, the catchrateina
single year could be overestimated by as much as 70%
orunderestimated by as much as 50%. When vessel
selection was biased toward those with lower catch
rates, average catch rates were underestimated by up to
60% and variability was high (up to 100%)(Figure 2).

When vessels were not selected at random, mean bias
systematically decreased below the true catch rate
(orange scenario). Non-random selection skews the
overall catch estimates because vessels who catch
less than other vessels may opt-in and/or vessels with
cleaner fishing practices are more willing to have EM
installed. This introduces the risk of misrepresenting
overall fishery performance. Furthermore, the mean
bias was amplified in the catch event category with
market catch and high variability in catch rates among
vessels. For example, if an average of 97,500 market
tuna were caught by a fleet with high variability in catch
rates, the vessel based monitoring scenario could
estimate as little as 45,000 tuna.

EM Scenario 2: 20% coverage of vessels with 20% review
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Figure 2. Percent bias for each catch event category across simulation replicates
for Scenario 2. Points show mean bias and error bars show 95% quantiles for mean
bias across replicate simulations (95% of simulations fill within the bounds). The
mean bias is the amount of bias we would expect to see on average across many
years of fishing. A bias of 100% means the estimate was double the true catch, a
bias of -100% means we never see a species that occurred in the catch. The vari-
ability shows the range of bias values a manager would be exposed to in data from
any single year of fishing.
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Human Observer Scenario 3 Monitor and review 7

When whole trips were selected randomly for human
observation results showed greater year-to-year variability
compared to Scenario 1, due to the clustering of reviewed
data within trips. This meant the manager had lower
confidence in the accuracy of annual catch rate estimates,
especially in fisheries where average catches varied trip-
to-trip (e.g. they may overestimate catch rates by as much
as 50% or underestimate catch rates by as much as 40%).

When trip selection was biased toward those with lower
catch rates—simulating behavioral changes by captains
under observation—mean catch rates were significantly
underestimated, by as much as 80% (Figure 3). This bias
was most pronounced if it was assumed the fishery had
high variability across trips - this assumption reflects

a situation where captains alter fishing practices or
locations when they know they have an observer on
board. For example, if an average of 97,500 market tuna
were caught by the fleet in a given year, this monitoring
scenario would have estimated as little as 36,100 tuna
(lower quantile for confidence).

Human Observer Scenario 3:
20% coverage of coverage with 75% review
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Figure 3. Percent bias as a function of catch event category across simulation
replicates for Scenario 3, where review is allocated to whole trips. Points show
mean bias and error bars show 85% quantiles for mean bias across replicate
simulations (95% of simulations fill within the bounds). The mean bias is the
amount of bias we would expect to see on average across many years of fishing.
The variability shows the range of bias values a manager would be exposed to in
data from any single year of fishing.
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of sets on 20% of all trips
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Summary and discussion

Our simulated scenarios reflect realistic ways that moni-
toring and review of fishing activity could be allocated
by a manager and the impacts said allocation could have
on the accuracy and consistency of fishery data, which
in turn impacts the manager’s ability to achieve essential
sustainability objectives.

We found that EM Scenario 1, comprehensive EM cover-
age across the fleet with random review (Box 2) across a
subset of fishing sets, resulted in unbiased and generally
consistent data on fishing activities. This scenario had
the lowest mean variance across all catch categories,
meaning it consistently produced reliable catch rate esti-
mates year after year. Therefore, EM Scenario 1is best
suited to help the manager annually estimate bycatch and
market species catch rates -a fundamental fishery man-
agement activity that is needed to ensure populations are
healthy and to help inform accurate management plans,
along with basic evidence for sustainability certifications
like the MSC Fisheries Standard. For 100% coverage,

we found that increasing the review rate above 20%
improved accuracy (Appendix B).Comprehensive EM
coverage across a fleet can also be used to incentivise
higher quality logbook reporting, and subsequently fill
gaps from partial EM footage review (Box 4).

When monitoring coverage was not comprehensive across
the whole fleet in Scenarios 2 and 3, there were opportuni-
ties for bias and behavioral changes. When monitoring
effort was allocated by selecting a subset of fishing trips
or vessels to be monitored, the variability increased and

© Jonne Roriz

BOX 2: an alternative to random review

An alternative to random selection is stratified
sampling, where monitoring is allocated based
on factors that are known to influence catch
rates, such as vessel type, gear, or fishing
location. Stratification could match or even
outperform random sampling in precision, but it
requires a strong understanding of the drivers of
catch variability. If key factors are overlooked,
monitoring based on stratification may still
deliver biased catch estimates.

the catch rate estimates were erroneous, with mean

catch rates appearing much lower than they actually were
across all five catch categories. The impacts of this bias
are that the manager consistently underestimates annual
average catch rates, resulting in potentially inaccurate
management plans and assessments as to the health and
productivity of market fish -and bycatch- populations. The
compounding impacts of biased catch rate estimates over
time could threaten the long-term sustainability of marine
wildlife populations and possibly result in an undetected
drop in fish numbers below sustainable limits. Beyond
accurate catch accounting, these impacts of bias also pre-
vent managers from having an accurate, fleet-wide picture
of other monitoring objectives, such as safe handling of
bycatch or adherence to gear practices.

Accurately estimating catch: an illustration of the effects of bias in independent monitoring of fisheries



BOX 3: alternative monitoring and review rates

Our three scenarios simulate realistic ways that
monitoring and review resources can be allocated.
Due to this realism, the total sample size of

sets reviewed varied across the scenarios. For
example, 100% EM coverage with 20% review

in EM Scenario 1is a greater number of sets
reviewed than 20% EM coverage with 20% review
in EM Scenario 2. Therefore, we also considered
the implications of keeping the number of sets
reviewed the same for the three scenarios of
allocating monitoring effort (by sets, trips, or
vessels). Additionally, we compare different
monitoring coverage rates of 20%, 30% and 100%
(all with 20% review) across the three scenarios.

Even with equal sample sizes, Scenarios 2(EM on
a subset of vessels)and 3 (Observers on a subset
of trips) had greater variance than Scenario 1
(random sets). Further, when monitoring coverage
was less than 100%, Scenarios 2 and 3 were
biased towards underestimating catch rates and
variability increased across all scenarios, meaning
the manager would have less certainty in annual

catch rates (Figure 4). : z 3
©:Jordan Robins/TNG.Photo Contest 2019
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Figure 4. Percent bias across the three monitoring and review scenarios for monitoring coverage rates of 20%, 30% and 100% (all with 20% review) for the market species
catch category. Points and bars of the same colour have the same total number of sets reviewed.
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Conclusions

Independent monitoring and unbiased catch data are
essential to the sustainable management of market
catch and bycatch species. Management agencies and
certification groups alike should adopt clear guidance on
how monitoring coverage and review should be allocated
to ensure management and sustainability objectives

are achieved. This study suggests that allocating
comprehensive monitoring coverage across a fleet

and reviewing the fishing activity that had monitoring

coverage at random is the best option to ensure that
catch data are accurate and unbiased.

We recommend that RFMOs and sustainability
certifications require 100% independent monitoring
coverage across a fleet or fishery with arandom review
of at least 20% of fishing activity to ensure fisheries
managers have credible catch estimates and better
visibility of fishing operations.

BOX 4: implications of monitoring scenarios for bias in logbook reporting

Captains who complete logbooks can misreport
catch. Especially common is underreporting of
bycatch or ETP species, compared to observer
data(e.g. Emery et al. 2019; Brown et al. 2021).
Further, logbook records are often incomplete,

and these data gaps may be biased towards some
components of a fishing fleet (e.g. Bellanger, Macher,
and Guyader 2016). Independent monitoring can be
used to validate logbook records, estimate the rate
of underreporting and create an incentive for more
accurate logbook reporting.

Observers or EM can increase the accuracy of log-
books when fishers know they are being monitored
and there are consequences for inaccurate logbooks
(Emery et al. 2019; Bremner et al. 2009). For example,
in along-line fishery in Australia logbook records of
turtle interactions went up by about 10 times when
electronic monitoring was implemented (Emery et
al. 2019). Monitoring with 100% coverage and partial
review of randomly selected fishing events creates
an incentive for more accurate logbook reporting.
The scientific credibility of logbook data is weaker
when there is selective application of independent
monitoring, especially if it is biased towards trips or
vessels with low bycatch rates.

Biased reporting of logbook data also has
implications for stock assessments and quota
allocations. Stock assessments can be biased to find
the current stock status is either too conservative, or
not conservative enough when catch data are under-
reported (Van Beveren et al. 2017; Rudd and Branch
2017). Increased variability in catch estimates across
years also creates potential for spurious trends that
could bias stock assessments. The effects of catch

underreporting on stock assessments are complex,
because assessments typically use complex models
with many interacting factors. Key findings are that
estimates of reference points will be unreliable if
catchis under-reported and that underreporting

is not accounted for (Van Beveren et al. 2017). The
biggest impact will also occur when the level of

bias changes over years. In particular, if the level

of bias increases, stock assessments will tend
towards being less conservative (i.e. not recognizing
overfishing), whereas if the level of bias decreases
then stock assessments will tend towards being more
conservative (Rudd and Branch 2017).

Logbook reporting of catch share management
systems provides an example of potential under-
reporting. When a fishery is restructured, catch
shares are most often allocated on the basis of
historical catch data (Lynham 2014). This can create
anincentive to over-report in logbooks, if impending
management changes are known about by fisheries.
In the long-term, biased logbook data may also result
in inequitable distribution of catch shares to fishers
(Lynham 2014).

There is also an opportunity to deploy arisk-based
logbook audit model that, when successfully
deployed, can help lower EMreview rates over
time aslogbook reporting becomes more accurate
and reliable. This model can lower EM program
costs and further empower fishers as the primary
self-reporting actor through this type of “trust but
verify” approach.

Accurately estimating catch: an illustration of the effects of bias in independent monitoring of fisheries
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APPENDIX A: representativeness of the data used in the case study

The simulations were designed to be realistic to longline
fishery catch of different species in the Pacific tuna
longline fisheries, but also representative of a broad
range of different fishery types. The simulation model
we used was not specific to longline fishing and could be
applied to any fishery with vessels, trips, and sets(e.qg.
vessels making daily trips to set gillnets, vessels making
multi-month trips to purse seine, vessels making <1 week
trips to set pots for crabs, etc.).

The fishery we simulated with 50 vessels setting around
20,000 sets per year is moderately large on a global scale.
Small fleets (e.g. <20 vessels) could have much higher
variability (i.e., broader error bars) for the bias statistics
because the sample size of vessels and the amount of
fishing activity is smaller.

The catch rates we used for the market, bycatch, and rare
bycatch species are representative of catchratesina
broad range of gear types operating in different regions
of the world. They amounted to an average of: 5.5 animals
per set for the market species, Tanimal per 13 sets for

the bycatch species and 1animal per 147 sets for the rare
bycatch species. As a comparison, Australian longline
fisheries catch an average of 50 animals per set summed
across five different market species (figures from Emery
et al. 2019, assuming an average of 2500 hooks per set)
and Australian gillnet fisheries catch an average of 14.6 of
their target species per net (assuming 1000m long nets,
Emery et al. 2019). These figures would be similar to our
market species if they were apportioned by individual
species. Bycatch per set of mammals, sharks, or turtles
ranges from 1animal per 40 sets to Tanimal per 330 sets
(summing all species within each of those taxa). Our
rates also align with global turtle bycatch rates. Turtle
bycatch in fisheries where it is reported ranges from <1
turtle per 500 sets to almost 20 turtles per set, for gillnet,
longline, and trawl fisheries globally (Wallace et al. 2010).
The higher rates of turtle bycatch in Wallace et al. (2010)
would be closer to our analysis of the market species.
Lower rates of bycatch than our rare species will have
greater uncertainty, increasing the importance of having
high coverage and high data review to estimate catch
rates of rarely caught species(Pierre et al. 2024).

APPENDIX B: different review rates with 100% monitoring coverage

Review rate impact on catch estimation bias
Market species across different monitoring scenarios

20

o

. }{{§§§;..

Percent Bias (%)
o

L
=)

FERTTNN

}{{iiiio

|
N
o

20 40 60 80 100

20 4

0

60 80 100 20 40 60 80 100

Review rate (%)

Appendix B, Figure 1Percent bias for market species catch for a range of review rates (assuming 100% monitoring coverage)and where monitoring is allocated at random
to sets, trips, or vessels. Points show mean bias and error bars show 95% quantiles for mean bias across replicate simulations (35% of simulations fill within the bounds).
Mean bias is unaffected by review rate, provided that monitoring coverage is 100%. The variability in bias reduces as review rate increases, because greater review rates
mean more data are collected, resulting in greater certainty that the estimated catch rate is close to the true catch rate.
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APPENDIX C: advanced methods and simulation code

Transparency statement
Simulation code is available at https://github.com/
cbrownb5/msc-review-rates

Advanced methods

We developed a general model for (1) simulating catch
from a year’s worth of fishing activity and (2) simulating
monitoring and review of that fishing catch. The model
was split into a catch event module that modelled catch
per set (Table S1) and a monitoring module that modelled
monitoring and review of a sub-sample of all sets(Table
S2). Simulation of catch and allocation of monitoring
effort were both stochastic. This allowed us to explore
how different monitoring scenarios impacted bias in
estimated catch rates, with realistic levels of uncertainty.
Specifically, our models accounted for uncertainty in:
how much fishing activity happens in the coming year,
how much catch is taken and by which vessels and on
which trips, how monitoring coverage is allocated to
fishing activities, what parts of the monitoring data are
reviewed (e.g. what video is turned into data sheets that
we can estimate catch from)and bias in how monitoring
coverage is allocated. These different sources of uncer-
tainty were important because a plan for monitoring
needs to be made before the fishing activity happens.
With our model, we then simulated replicate years of
fishing to obtain catch bias estimates along with ranges
of variability.

For the catch model we simulated the number of trips per
vessel and number of sets per trip, as well as catch per
set. Trips per vessel and sets per trip were modelled as
random numbers, to reflect real world variation in their
numbers. For simplicity we did not consider correlations
in the number of trips or sets per vessel(e.g. if some
vessels consistently make fewer longer trips). This would
require more detailed fisheries data for analysis than the
summary statistics in published work. The number of
vessels was fixed at 50. Catch per set was modelled as
arandom number with additive components for vessel
identity and trip identity. This simulation of catches emu-
lates the statistical analyses of catch, which often uses
mixed effects models(e.g. Roberson et al. 2025; Gilman
et al. 2012). Therefore, catch events included covariation
caused by vessel identity and trip identity.

The monitoring scenarios were modelled by randomly
sampling sets, trips or vessels for monitoring. A
proportion of sets (20%) was then selected within this
sub-sample for data review. For the trip and vessel
scenarios, a bias parameter was included such that
monitoring coverage was biased towards trips or vessels

with lower than average catch rates. We considered three
monitoring scenarios, as described in the main text. Note
that the total sample size in terms of number of sets var-
ied across scenarios. This choice was made so we could
represent coverage and review rates that are realistic to
different real world interpretations of 20%" monitoring.

We also ran analyses where all of these scenarios the
review rate as a proportion of the total sets would be on
average 6% if our coverage is 30% and review rate is 20%.

This division between coverage (e.g. what you collect
video data of) and review (what you actually watch to get
datasheets)is reflective of how real world fisheries oper-
ate. The total review quantity was also an average across
multiple replicate simulations, because in an individual
simulation the actual review rate depends on the fish-
ing activity model, which had stochastic elements.
Therefore, our model is realistic to a situation a manager
faces where they can allocate observers and cameras to
vessels or trips, but they do not know ahead of time how
much fishing will happen on those trips and vessels.

The random sampling of fishing activities and catch
events was repeated to create 1000 datasets of annual
fishing activities. Each monitoring scenario was then
applied to each of the 1000 fishery datasets. The bias
statistics were calculated as the difference between the
true catch rate for that dataset and catch rate estimated
by the monitoring scenario. The bias statistics therefore
represent the difference between the estimated and true
catch rates, conditional on each sample of catches. This
conditional sampling is reflective of the situation manag-
ers face in the real world, where the observed catch rate
differs from the true catch rate by an unknown amount.
The confidence intervals across the 1000 simulations
therefore represent our uncertainty about the accuracy
of catch estimation in the coming year, given we know
the number of vessels, but we don't yet know the number
of trips, sets or catches those vessels will take.

For a given monitoring scenario M(Table S2)and catch data
y, the estimated catch rate per set can be calculated as the
average catch per set that was monitored and reviewed:

C, _ Z (yv,t,s * Mv,t,s)
Z Mv,t,s

Where y, + s is a matrix of catches and M, ; s is a matrix
of 0/1that indicates whether a given set was monitored
and reviewed.

Accurately estimating catch: an illustration of the effects of bias in independent monitoring of fisheries
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The true catch rate in each simulation, C was simply The percent bias is what we present above, because it

average catch per set. puts all scenarios on the same scale. The absolute bias
was much smaller for rarer species and therefore hard to

We calculated two bias statistics, the absolute bias: visualize in comparisons.

B=C-C All parameters were chosen to be representative of

the Western Pacific longline tuna fleets, data givenin
Brown et al. (2021), parameters are in Tables S3-sb. The
100« B/C analysis was performed with the R program (R Core Team
2024). The code is available online at https://github.com/
cbrownb/msc-review-rates.

and the bias as a percentage of the catch rate:

TABLE S1: model Equations and parameters of the catch event module

Equation Description Parameters

IT'PS; mean number of trips per year,

T, ~ dnegbin(,umps, etrips) Number of trips per vessel per year gtrips, dispersion in trips per year

Vessel-level random effect

0”: vessel effect standard deviation
for catches per set

x, ~ dnorm(0, ")

- sets, .
St ~ dnegbin (s, 65¢1) Number of sets per trip éL “:mean sets pertrip,
@3¢ts: dispersion in sets per trip

Byt ™~ dnorm(O, UZ) Trip-level random effect for catches o%: trip effect standard deviation

ot = exp(Bo + 2ot + ) Expected catchrate per set Bo: baseline catch rate per set
for a given trip

Yuit,s ™~ dnegbin(#u,t, ecawh) Catch per set geatch, catch dispersion

Notes: © Erin Feinblatt
V': Number of vessels -
T,: Number of trips for vessel v

Sm: Number of sets for trip ¢ of vessel v

T,: Vessel random effect

Zy ¢+ Trip random effect

Iy ¢ Expected catch rate for trip ¢ of vessel v

Yo,t,s- Catch for set on trip ¢ of vessel v

Accurately estimating catch: an illustration of the effects of bias in independent monitoring of fisheries
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TABLE S2: model Equations and parameters of the monitoring module

Equation

Description

Parameters

¢ = loglt (preview)

Logit of review probability per set

p: proportion of sets reviewed
(e.g., 0.2). Applied to a sub-sample
of sets that are monitored.

¢v = loglt (pcover)

Logit of base monitoring probability
per vessel. Likewise for trips.

Pcover: Proportion of vessels/trips that
are covered by monitoring.

M, 1.5 ~ Bernoulli(pyevicw)

Monitoring indicator for random
sampling across sets within the vessels/
trips/sets with monitoring coverage

Mv,t,s: 1if set monitored, O otherwise

¢v == logit(pcover) + biasvessels * Ty

Logit of monitoring probability for
vessel-based sampling, with bias

bias,essers: vessel bias factor,
Z,: vessel random effect

V,, ~ Bernoulli(logit ' (¢,))

Monitoring indicator for
vessel-based sampling

V,: 1if vessel monitored, 0 otherwise

¢t = IOgit(pcover) + biastrip . Zv,t

Logit of monitoring probability for
trip-based sampling, with bias

biasyyip: trip bias factor,
Zy,¢: trip random effect

T, ~ Bernoulli(logit_l(@))

Monitoring indicator for
trip-based sampling

T}: 1if trip monitored,
0 otherwise

Notes:

M., +,s: Monitoring indicator for set S on trip ¢ of vessel v (1=monitored, 0 = not monitored)

Peover: Proportion of sets to be monitoring coverage

Dreview: Proportion of sets to be reviewed for data.

biasyessers: biastip: Bias factors for vessel/trip selection (higher values = stronger bias towards lower catch rates)

T,: Vessel-level random effect (from catch model)

Zy,¢: Trip-level random effect (from catch model)

Accurately estimating catch: an illustration of the effects of bias in independent monitoring of fisheries
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TABLE S3: fixed parameter values. Fleet specific parameters was based on values from Brown et al. (2021).

Parameter Value

Description
vV Number of vessels in the simulated fleet,
50 ; - . .
representative of medium-sized longline fleet
trips Mean number of trips per vessel per year,
H 10 . . -
based on typical longline operations
trips Dispersion parameter for trips per vessel,
0 113 T
allows realistic variation in fishing effort
sets Mean number of sets per trip,
K 26 . . L
typical for longline tuna fishing
gsets Dispersion parameter for sets per trip,
1.8 . "
reflects operational variation
catch Catch dispersion parameter,
0 0.42 . L
controls overdispersion in catch counts
Deover 0.2/0.3 Proportion of sets qoyered by momto.rlng(e.g. 20%, 30%),
as specified by MSC requirements
Preview 0.2/1.0 Proportioq of sets that are revie.wed for
data within those that are monitored.

© Giacomo Marchione/TNC Photo Contest 2023
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TABLE S4: parameters for monitoring scenarios.

Monitoring Set Description (ic;v_el:':gn?tl;a:t)e Vt(e:isaesl_B‘:a;s (bi:;rsiff:i:tsor) selecst?:: rate

(p—sets_select)
1 Baseline 1.0(100%) 0 0 0.2(20%)
2 Vessel bias 1.0(100%) -2 0 0.2(20%)
3 Trip bias 1.0(100%) 0 -2 0.2(20%)
4 Baseline 20% 0.2(20%) 0 0 0.2(20%)
5 Vessel bias 20% 0.2(20%) -2 0 0.2(20%)
6 Trip bias 20% 0.2(20%) 0 -2 0.2(20%)
7 Baseline 75% 0.2(20%) 0 0 0.75(75%)
8 Vessel bias 75% 0.2(20%) -2 0 0.75(75%)
9 Trip bias 75% 0.2(20%) 0 -2 0.75(75%)

TABLE S5: species-specific parameter values for catch simulations.

Species Set Species Type : ‘ ez
1 Market species 1.7 0.41 0.67 0.42
2 Market species + 17 0.82 0.67 0.42
high vessel variance
3 Market species + 1.7 0.41 1.3 0.42
high trip variance
4 Bycatch species -2.52 0.55 0.65 0.42
5 Rare bycatch species -4.9 0.55 0.65 0.42

Accurately estimating catch: an illustration of the effects of bias in independent monitoring of fisheries
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