By partnering with local nutrient service providers, the team is working to identify which fields contain elevated levels of phosphorus and would make good candidates to implement a strategic practice aimed at reducing phosphorus runoff.

Identify Project Sites

The partnership works to ease the financial burden to implement practices and provide support in installing the practices needed to slow phosphorus runoff from the farm.

Secure Funding

Monitoring and researching the effectiveness of each practice that has been implemented is key to understanding how these practices work.

Study

Once we understand which practices are most effective and how they impact phosphorus runoff from the farm, we can greatly reduce the amount of phosphorus flowing into a field.

Scale

Phosphorus in Lake Erie

The current input of dissolved reactive phosphorus into the Western Lake Erie Basin is elevated. This project is aimed at bringing that input down. The watershed wide goal is to reduce the amount of dissolved reactive phosphorus entering the lake by 40% by 2020.

Drinking Water

This watershed provides drinking water for more than 640,000 people. In 2014, algae blooms were so widespread that a drinking water ban was put into effect for the local population. Protecting this resource is a major public health issue.

Fishing Economy

Protecting water quality is important to the local fishing industry and the more than $260 million commercial/fishing economy on Lake Erie.

Recreation Economy

Lake Erie draws more than 11 million visitors each year, and continued algae blooms continue to keep visitors away from the coastal towns throughout the summer months.

Public Private Partnership

The Nature Conservancy, The Ohio State University and local nutrient service providers have launched a pilot project identifying pathways for elevated levels of phosphorus reaching our waterways. The goal is to reduce phosphorus inputs into the Western Lake Erie Basin and reduce the threat of harmful algal blooms.