
Report Code: AR_716_120820

Length-Based Stock Assessment Of A Species Complex In Deepwater Demersal Fisheries Targeting Snappers In Indonesia Fishery Management Area WPP 716

DRAFT - NOT FOR DISTRIBUTION. TNC-IFCP Technical Paper

Peter J. Mous, Wawan B. IGede, Jos S. Pet

AUGUST 12, 2020

The Nature Conservancy Indonesia Fisheries Conservation Program

Ikat Plaza Building - Blok L Jalan By Pass Ngurah Rai No.505, Pemogan, Denpasar Selatan Denpasar 80221 Bali, Indonesia Ph. +62-361-244524

People and Nature Consulting International

Grahalia Tiying Gading 18 - Suite 2 Jalan Tukad Pancoran, Panjer, Denpasar Selatan Denpasar 80225 Bali, Indonesia

Table of contents

1	Inti	roduction	2								
2	2 Materials and methods for data collection, analysis and reporting										
	2.1	Frame Survey	6								
	2.2	Vessel Tracking and CODRS	6								
	2.3	Data Quality Control	7								
	2.4	Length-Frequency Distributions, CpUE, and Total Catch	7								
	2.5	I-Fish Community	28								
3	Fisl	ning grounds and traceability	32								
4		igth-based assessments of Top 20 most abundant species in CODRS samples inclall years in WPP 716	ud- 36								
5	Dis	cussion and conclusions	7 9								
6	Ref	Perences	86								

1 Introduction

This report presents a length-based assessment of multi-species and multi gear demersal fisheries targeting snappers, groupers, emperors and grunts in fisheries management area (WPP) 716, covering the southern part of the Celebes Sea, also referred to as the Sulawesi Sea, off East Kalimantan and North Sulawesi and the Southern part of the Philippine Sea in the western Pacific Ocean, between North Halmahera and the Southern Philippines (Figure 1.1). WPP 716 borders WPP 713 in the northern Makassar Strait, WPP 715 in the Molucca Sea, and WPP 717 in the western Pacific Ocean. WPP 716 has international boundaries with Philippines waters and territories to the north and Palauan waters and territories to the East.

The fishing grounds in WPP 716 (Figure 1.2) form a continuous habitat with the shelf area of the Makassar Strait, the northern Celebes Sea, the Maluku Sea, and the Halmahera Sea. Some fleet segments from the southern part of WPP 716 sometimes operate in the adjacent waters of WPP 713, WPP 715 and WPP 717, and vice versa. Fishing boats from East Kalimantan, North Sumatra and North Halmahera sometimes cross WPP boundaries into neighbouring WPPs occasionally also stray in to foreign waters.

The majority of fleets and vessels on the fishing grounds in WPP 716 originate from East Kalimantan, North Sulawesi and North Halmahera, and they generally fish at depths ranging from 50 meters on the shelf to 350 meters down the deeper slopes into the Celebes Sea and western Pacific Ocean. Drop lines, bottom long lines and traps are the most important gear types in the fisheries targeting snappers, groupers, emperors and grunts, but deep set bottom gillnets are also used. The drop line fishery is an active vertical hook and line fishery operating at depths from 50 to 250 meters, whereas long lines and traps are set horizontally along the bottom at depths usually ranging from 50 to 150 meters only. Some boats in WPP 716 use multiple gear types, even within single trips, in "mixed gear" fisheries.

The Indonesian deep demersal fisheries catches a large number of species, and stocks of 100 of the most common species are monitored on a continuous basis through a Crew Operated Data Recording System (CODRS). The current report presents the top 50 most abundant species of fish in CODRS samples (Tables 1.1 and 1.2) in WPP 716, and analyses length frequencies of the 50 most important species in the combined deep demersal catches in this fisheries management area. For a complete overview of the species composition with images of all 100 target species, please refer to the ID guide prepared for these fisheries¹.

For further background on species life history characteristics, and data-poor length based assessment methods, as applied in this report, please refer to the assessment guide that was separately prepared for these fisheries².

 $^{^{1} \}mathtt{http://72.14.187.103:8080/ifish/pub/TNC_FishID.pdf}$

²http://72.14.187.103:8080/ifish/pub/DeepSlopeSpeciesAssessmentTool.pdf

Data in this report represent complete catches by medium scale vessels from the above described fleets. All fish captured were photographed on measuring boards by fishing crew participating in our Crew Operated Data Recording System or CODRS. Images were analysed by project staff to generate the species specific length frequency distributions of the catches which served as the input for our length based assessment. Fishing grounds were recorded with SPOT tracers placed on contracted vessels.



Figure 1.1: Fisheries Management Areas (Wilayah Pengelolaan Perikanan or WPP) in Indonesian marine waters.

Figure 1.2: Bathymetric map of the WPP 716 including Celebes Sea, in Indonesia. Red lines are EEZ border, black lines are WPP border, blue lines are MPAs.

Table 1.1: Length-weight relationships, trading limits and total sample sizes (including all years) for the 50 most abundant species in CODRS samples from deep water demersal fisheries in 716

	// ID	0 .	Reported Trade Limit		a L ^b	Length Type for a & b	Converted Trade Limit	Trade Limit	Sample
Rank		Species	Weight (g)	a	b	TL-FL-SL	L(cm)	TL(cm)	Sizes
1	17	Lutjanus malabaricus	500	0.009	3.137	FL	33.11	33.11	6955
2	24	Lutjanus johnii	300		2.907	$_{ m FL}$	27.28	28.49	5635
3	50	Epinephelus coioides	1500		3.084	$_{ m TL}$	46.94	46.94	3782
4	63	Lethrinus lentjan	300		2.986	$_{ m FL}$	25.16	26.35	1746
5	21	Lutjanus erythropterus	500		2.870	$_{ m FL}$	31.79	31.79	1558
6	5	Etelis radiosus	1000		2.689	$_{ m FL}$	38.05	43.15	1500
7	25	Lutjanus russelli	300		2.907	$_{ m FL}$	27.28	28.49	1333
8	20	Lutjanus gibbus	500		3.091	$_{ m FL}$	28.87	31.09	1173
9	78	Caranx ignobilis	2000		2.913	$_{ m FL}$	46.78	54.36	1058
10	90	Diagramma pictum	500		2.988	$_{ m FL}$	33.08	36.71	991
11	10	Pristipomoides sieboldii	300		2.942	$_{ m FL}$	25.52	29.21	899
12	33	Paracaesio xanthura	300		3.000	SL	23.64	27.39	769
13	62	Variola albimarginata	300		3.079	$_{ m FL}$	26.68	30.44	629
14	28	Lutjanus boutton	300		3.000	$_{ m FL}$	20.75	21.56	571
15	27	Lutjanus vitta	300		2.978	$_{ m FL}$	26.72	27.64	556
16	9	Pristipomoides filamentosus	500		2.796	FL	29.70	33.27	548
17	91	Pomadasys kaakan	300		2.985	$_{ m TL}$	26.57	26.57	452
18	1	Aphareus rutilans	1000		2.961	$_{ m FL}$	42.20	49.61	427
19	6	Etelis coruscans	500		2.758	$_{ m FL}$	30.28	37.85	333
20	19	Lutjanus timorensis	500		3.137	$_{ m FL}$	33.11	33.34	304
21	60	Plectropomus maculatus	500		3.000	$_{ m FL}$	31.76	31.76	284
22	68	Lethrinus rubrioperculatus	300		3.108	$_{ m FL}$	25.48	28.05	257
23	23	Pinjalo pinjalo	300		2.970	$_{ m FL}$	28.42	31.16	186
24	80	Caranx sexfasciatus	2000		2.930	$_{ m FL}$	43.43	49.51	179
25	93	Sphyraena barracuda	1500		3.011	$_{ m FL}$	61.48	69.47	172
26	15	Lutjanus argentimaculatus	500		2.792	$_{ m FL}$	31.22	31.78	148
27	71	Gymnocranius griseus	500		2.885	$_{ m FL}$	28.43	30.56	147
28	34	Paracaesio kusakarii	500		3.135	$_{ m FL}$	30.96	34.80	134
29	82	Elagatis bipinnulata	1000	0.013		$_{\mathrm{GL}}$	46.53	55.37	130
30	38	Cephalopholis sexmaculata	300		3.000	$_{ m SL}$	22.37	28.24	120
31	85	Erythrocles schlegelii	1500		3.040	$_{ m FL}$	48.55	53.60	111
32	7	Pristipomoides multidens	500		2.944	$_{ m FL}$	31.18	34.92	109
33	70	Gymnocranius grandoculis	500		2.885	$_{ m FL}$	28.43	30.53	100
34	46	Epinephelus bleekeri	300		3.126	$_{ m TL}$	28.09	28.09	99
35	45	Epinephelus areolatus	300	0.011		$_{ m FL}$	28.18	28.77	93
36	4	Etelis sp.	500		2.950	$_{ m FL}$	30.16	32.84	84
37	2	Aprion virescens	1000		2.886	$_{ m FL}$	40.49	45.90	78 70
38	81	Caranx tille	2000		2.930	$_{ m FL}$	43.43	49.51	78
39	84	Seriola rivoliana	2000		3.170	$_{ m FL}$	54.23	60.03	65
40	66	Lethrinus olivaceus	300		2.851	$_{ m FL}$	25.49	27.50	55
41	18	Lutjanus sebae	500		3.208	$_{ m FL}$	29.97	31.26	44
42	53	Epinephelus heniochus	300		2.624	$_{ m FL}$	25.59	25.59	44
43	94	Sphyraena forsteri	500		3.034	$_{ m FL}$	43.51	49.16	44
44	32	Paracaesio gonzalesi	300		3.050	$_{ m FL}$	23.24	24.96	33
45	16	Lutjanus bohar	500		3.059	FL	29.70	31.31	32
46	37	Cephalopholis miniata	300		2.864	TL	26.35	26.35	32
47	67	Lethrinus amboinensis	300		2.851	$_{ m FL}$	25.49	28.06	29
48	61	Plectropomus leopardus	500		3.060	$_{ m FL}$	32.56	33.38	28
49	29	Lutjanus rivulatus	500		3.260	$_{ m FL}$	29.12	29.97	27
50	39	Cephalopholis sonnerati	300	0.015	3.058	TL	25.78	25.78	27

Table 1.2: Sample sizes over the period 2016 to 2024 for the 50 most abundant species in CODRS samples of deepwater demersal fisheries in WPP 716

Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
1	Lutjanus malabaricus	0	0	0	4716	2239	0	0	0	0	6955
2	Lutjanus johnii	0	0	0	3059	2576	0	0	0	0	5635
3	Epinephelus coioides	0	0	0	2652	1130	0	0	0	0	3782
4	Lethrinus lentjan	0	0	0	1217	529	0	0	0	0	1746
5	Lutjanus erythropterus	0	0	0	1141	417	0	0	0	0	1558
6	Etelis radiosus	0	0	0	764	736	0	0	0	0	1500
7	Lutjanus russelli	0	0	0	1078	255	0	0	0	0	1333
8	Lutjanus gibbus	0	0	0	798	375	0	0	0	0	1173
9	Caranx ignobilis	0	0	0	792	266	0	0	0	0	1058
10	Diagramma pictum	0	0	0	669	322	0	0	0	0	991
11	Pristipomoides sieboldii	0	0	0	595	304	0	0	0	0	899
12	Paracaesio xanthura	0	0	0	294	475	0	0	0	0	769
13	Variola albimarginata	0	0	0	246	383	0	0	0	0	629
14	Lutjanus boutton	0	0	0	349	222	0	0	0	0	571
15	Lutjanus vitta	0	0	0	379	177	0	0	0	0	556
16	Pristipomoides filamentosus	0	0	0	223	325	0	0	0	0	548
17	Pomadasys kaakan	0	0	0	386	66	0	0	0	0	452
18	Aphareus rutilans	0	0	0	207	220	0	0	0	0	427
19	Etelis coruscans	0	0	0	237	96	0	0	0	0	333
20	Lutjanus timorensis	0	0	0	122	182	0	0	0	0	304
21	Plectropomus maculatus	0	0	0	128	156	0	0	0	0	284
22	Lethrinus rubrioperculatus	0	0	0	141	116	0	0	0	0	257
23	Pinjalo pinjalo	0	0	0	85	101	0	0	0	0	186
24	Caranx sexfasciatus	0	0	0	95	84	0	0	0	0	179
25	Sphyraena barracuda	0	0	0	115	57	0	0	0	0	172
26	Lutjanus argentimaculatus	0	0	0	92	56	0	0	0	0	148
27	Gymnocranius griseus	0	0	0	82	65	0	0	0	0	147
28	Paracaesio kusakarii	0	0	0	75	59	0	0	0	0	134
29	Elagatis bipinnulata	0	0	0	80	50	0	0	0	0	130
30	Cephalopholis sexmaculata	0	0	0	67	53	0	0	0	0	120
31	Erythrocles schlegelii	0	0	0	55	56	0	0	0	0	111
32	Pristipomoides multidens	0	0	0	47	62	0	0	0	0	109
33	Gymnocranius grandoculis	0	0	0	30	70	0	0	0	0	100
34	Epinephelus bleekeri	0	0	0	77	22	0	0	0	0	99
35	Epinephelus areolatus	0	0	0	58	35	0	0	0	0	93
36	Etelis sp.	0	0	0	57	27	0	0	0	0	84
37	Aprion virescens	0	0	0	50	28	0	0	0	0	78 70
38	Caranx tille	0	0	0	31	47	0	0	0	0	78
39	Seriola rivoliana	0	0	0	31	34	0	0	0	0	65
40	Lethrinus olivaceus	0	0	0	37	18	0	0	0	0	55
41	Lutjanus sebae	0	0	0	29	15	0	0	0	0	44
42	Epinephelus heniochus	0	0	0	36	8	0	0	0	0	44
43	Sphyraena forsteri	0	0	0	25	19	0	0	0	0	44
44	Paracaesio gonzalesi	0	0	0	16	17	0	0	0	0	33
45	Lutjanus bohar	0	0	0	18	14	0	0	0	0	32
46	Cephalopholis miniata	0	0	0	11	21	0	0	0	0	32
47	Lethrinus amboinensis	0	0	0	17	12	0	0	0	0	29
48	Plectropomus leopardus Lutjanus rivulatus	0	0	$0 \\ 0$	7 19	21	0	0	0	0	28 27
49 50		0 0	0	0	13	14 16	0	0	0	0 0	
50	Cephalopholis sonnerati	U	U	U	11	16	U	U	0	U	27

2 Materials and methods for data collection, analysis and reporting

2.1 Frame Survey

A country-wide frame survey was implemented to obtain complete and detailed information on the deep demersal fishing fleet in Indonesia, using a combination of satellite image analysis and ground truthing visits to all locations where either satellite imagery or other forms of information indicated deep demersal fisheries activity. During the frame survey, data were collected on boat size, gear type, port of registration, licenses for specific FMAs, captain contacts and other details, for all fishing boats in the fleet. Following practices by fisheries managers in Indonesia, we distinguished 4 boat size categories including "nano" (<5 GT), "small" (5-< 10 GT), "medium" (10-30 GT), and "large" (>30 GT). We also distinguished 4 gear types used in these fisheries, including vertical drop lines, bottom set long lines, deep water gillnets and traps. A 5th category of gear classification was needed to record operations using "mixed gear" when 2 or more of the gear types were used on the same trip and catches were not separated.

Frame survey data are continuously updated to keep records of the complete and currently active fishing fleet in the deep demersal fisheries. Fleet information is summarized by registration port and home district (Table 2.14), while actual fishing grounds are determined by placing SPOT Trace units on all fishing boats participating in the program. By late 2019, most (over 80%) of the Indonesian coastline had been surveyed and a majority of the fleet was on record. The total fleet in each WPP is a dynamic number, as boats are leaving and being added to the local fleet all the time, and therefore the fleet survey data need to be updated continuously.

2.2 Vessel Tracking and CODRS

Vessel movement and fishing activity as recorded with SPOT data generates the information on fleet dynamics. When in motion, SPOT Trace units automatically report an hourly location of each fishing boat in the program, and when at rest for more than 24 hours, they relay daily status reports. Data on species and size distributions of catches, as needed for accurate length based stock assessments, are collected via Crew Operated Data Recording Systems or CODRS. This catch data is georeferenced as the CODRS works in tandem with the SPOT Trace vessel tracking system. Captains were recruited for the CODRS program from across the full range of boat size and gear type categories.

The CODRS approach involves fishers taking photographs of the fish in the catch, displayed on measuring boards, while the SPOT tracking system records the positions. Data recording for each CODRS fishing trip begins when the boat leaves port with the GPS recording the vessel tracks while it is steaming out. After reaching the fishing grounds, fishing will start, changing the track of recorded positions into a pattern that shows fishing instead of steaming. During the fishing activity, fish is collected on the deck or in chiller boxes on deck. The captain or crew will then take pictures of the fish, positioned over measuring boards (Figure 2.1), before moving the fish from the deck or from the chiller to the hold (to be stored on ice) or to the freezer. The process is slightly different on some of the "nano" boats (around 1 GT), where some crew take pictures upon landing instead of at sea. In these situations, the timestamps of the photographs are still used as an indication of the fishing day, even though most fishing may have happened on the day before.

At the end of the trip, the storage chip from the camera is handed over for processing of the images by expert staff. Processing includes ID of the species and measurement of the length of the fish (Figure 2.2), double checking by a second expert, and data storage in the IFish data base. Sets of images from fishing trips with unacceptable low quality photographs were not further processed and not included in the dataset. Body weight at length could be calculated for all species using length-weight relationships to enable estimation of total catch weights as well as catch weights per species for individual fishing trips by CODRS vessels. Weight converted catch length frequencies of individual catches could therewith be verified against sales records of landings. These sales receipts or ledgers represent a fairy reliable estimate of the total weight of an individual catch (from a single trip, and including all species) that is independent from CODRS data.

2.3 Data Quality Control

With information from sales records we verified that individual catches were fully represented by CODRS images and we flagged catches when they were incomplete, judging from comparison with the weight converted catch size frequencies. When estimated weights from CODRS where above 90% of landed weights from receipts, they were considered complete and accepted for use in length-based analysis and calculations of CpUE. CpUE is calculated on a day by day basis, in kg/GT/day, using only those days from the trip when images were actually collected. Medium size and larger vessels (10 GT and larger) do trips of at least a week up to over a month. There may be some days on which weather or other conditions are such that no images are collected, but sufficient days with images, within those trips usually remain for daily CpUE estimates and to supply samples for length-based analysis. For boats of 10 GT and above, incomplete data sets with 30% to 90% coverage were still used for analysis, using only those days on which images were collected. For boats below 10 GT (doing day trips or trips of just a few days) only complete data sets are used for CpUE calculations. All data sets on catches with less than 30% coverage were rejected and were not used in any analysis.

2.4 Length-Frequency Distributions, CpUE, and Total Catch

By the end of 2019, more than 400 boats participated in the CODRS program (Figure 2.3) across all fishing grounds in Indonesia, with close to 40 boats enrolled in each WPP (Table 2.1). Recruitment of captains from the overall fleet into the CODRS program was not exactly proportional to composition of the fleet in terms of vessel size, gear type and the FMA where the boat normally operates. Actual fleet composition by boat size and gear type, and activity in terms of numbers of active fishing days per year for each category, are therefore used when CODRS data are used for CpUE and catch calculations. Species composition in the catch is also not exactly the same as species composition in the CODRS samples. Catch information by WPP and by fleet segment from CODRS samples needs to be combined with fleet composition and activity information to obtain accurate annual catch information and species composition for each segment of the fleet.

Converted weights from catch size frequencies on individual fishing days, in combination with activity data from onboard trackers were used to estimate catch per unit of effort (CpUE) by fleet segment (boat size * gear type), by FMA, by species, and over time. Plotted data show clear differences between CpUE values for different gear types and different boat size categories (Figure 2.4) and we therefore work with separated gear types and boat size categories to generate CpUE values for each distinct segment of the fleet (Table 2.2 and Table 2.3). Activity data from onboard trackers on more than 400 fishing boats were used to estimate the number of active fishing days per year for each segment of the fleet (Table 2.4) and the total (hull) Gross Tonnage in each fleet segment was combined with fleet activity to establish a measure of effort. With this information, CpUE could be precisely defined in kg per GT per active fishing day for each type of gear and each category of boat size in each FMA. Annual averages of CpUE by fleet segment were plotted for the top 7 species in each FMA (Figures 2.5 through 2.11), as indicators for stock health, and to compare with indicators from length-based analysis (i.e. Spawning Potential Ratio and percentage of immature fish in the catch).

Information on fleet activity, fleet size by gear type and boat size, and average size frequencies by species (per unit of effort) are used to estimate total catch. Fishing effort in terms of the average number of active fishing days per year for each gear type and boat size category (Table 2.4), was derived from SPOT data looking at movement patterns. Fleet size by gear type and boat size category (Table 2.5) was obtained from field surveys, where each vessel was recorded in a data base with estimated GT. Average size frequency distributions by fleet segment and species for each FMA, in combination with the information on effort by fleet segment, were thus used to estimate CATCH LFD (over the entire fleet) from average CODRS LFD by fleet segment. Only annual sample sizes larger than 200 fish per species and 50 fish per fleet segment were used for further calculations. Numbers per size class for each species in the catch were multiplied with weights per size class from length-weight relationships, to calculate catches by fleet segment (Table 2.7), species distribution in the total catch (Table 2.8), as well as catch by species for each gear type separately (Tables 2.9 through 2.13).

As the CODRS program is still in development, some parts for the fleet ("fleet segments", a combination of WPP, gear type, and boat size category) are not yet represented. For those missing fleet segments, we applied the following approach to estimate annual catch. First, within each WPP, we estimated the total catch and the total effort for all fleet segments where we had representation by CODRS. We expressed annual effort as "tonnage-days", ie, the GT of each vessel times the annual number of fishing days. Then, we calculated the average catch-per-unit-effort, over all fleet segments that have CODRS representation within each WPP (in metric tons per tonnage-day). This resulted in one catch-per-unit-effort estimate for each WPP (CPUE-estimate-per-WPP). Then, we calculated the effort, in tonnage-days, for the fleet segments where we did not have CODRS representation, and we multiplied this effort with CPUE-estimate-per-WPP to get the estimated total annual catch for that fleet segment. This means that, within each WPP, fleet segments that do not have CODRS representation all have the same CPUE estimate-per-WPP, but their total catch estimates vary because effort between those fleet segments vary. We applied this approach for total catch as well as total catch by species.

Trends in CpUE by species and by fleet segment (Figures 2.5 through 2.11) can be used as indicator for year-on-year changes in status of the stocks, for as far as time series are available within each fleet segment. Note, however, that these time series sometimes are incomplete or interrupted. This is due to variations in the presence of fleet segments between years in each WPP, and sometimes the CODRS vessels representing a fleet segment may disappear from one WPP and show up in another WPP. This may happen due to problems with processing permits at local authorities, but also due to the emerging differences in efficiencies between gear types and boat size categories, as well as due to perceptions on opportunities in other WPPs.

Figure 2.1: Fishing crew preparing fish on a measuring board.

Figure 2.2: Fish photographed by fishing crew on board as part of CODRS.

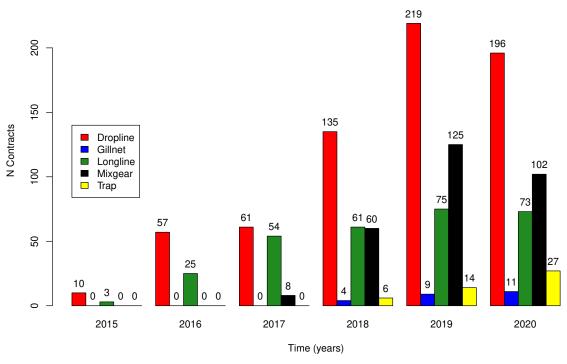


Figure 2.3: Number of CODRS contractors by gear type actively fishing in Indonesian waters.

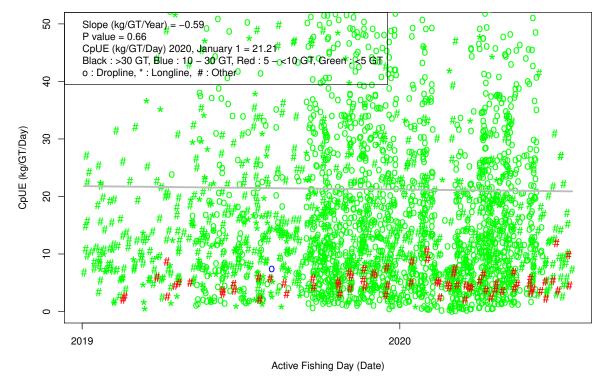


Figure 2.4: Catch per Unit of Effort in WPP 716.

Table 2.1: Number of CODRS deployed by gear type and boat size category in WPP 716

N	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano	26	3	NA	5	0	34
Small	NA	0	NA	1	NA	1
Medium	0	NA	NA	NA	NA	0
Large	NA	NA	NA	NA	NA	0
Total	26	3	0	6	0	35

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.2: CpUE by fishing gear and boat size category in WPP 716 for the most recent 365 days

kg/GT/Day	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano	28.45	25.53	NA	13.77	26.59
Small	NA	26.59	NA	5.69	NA
Medium	26.59	NA	NA	NA	NA
Large	NA	NA	NA	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.3: Number of CODRS observations that contribute to CpUE value in WPP 716 for the most recent $365~{\rm days}$

N	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano	1525	113	NA	377	2071
Small	1	2071	NA	55	NA
Medium	2071	NA	NA	NA	NA
Large	NA	NA	NA	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.4: Average active-fishing days per year by fishing gear and boat size category in all WPP

Days / Year	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano Dedicated	201	235	224	194	265
Nano Seasonal	100	118	112	97	133
Small Dedicated	213	258	247	277	241
Small Seasonal	107	129	124	139	121
Medium Dedicated	204	213	258	219	202
Medium Seasonal	102	107	129	110	101
Large Dedicated	166	237	151	185	185
Large Seasonal	83	119	75	92	92

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.5: Current number of boats in the fleet by fishing gear and boat size category in WPP 716

Number of Boat	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	74	50	0	10	1	135
Nano Seasonal	447	5	0	1	58	511
Small Dedicated	0	4	0	1	0	5
Small Seasonal	0	0	0	0	0	0
Medium Dedicated	1	0	0	0	0	1
Medium Seasonal	0	0	0	0	0	0
Large Dedicated	0	0	0	0	0	0
Large Seasonal	0	0	0	0	0	0
Total	522	59	0	12	59	652

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.6: Current total gross ton nage of all boats in the fleet by fishing gear and boat size category in WPP $716\,$

Total GT	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	64	141	0	25	3	233
Nano Seasonal	669	20	0	3	145	837
Small Dedicated	0	20	0	8	0	28
Small Seasonal	0	0	0	0	0	0
Medium Dedicated	22	0	0	0	0	22
Medium Seasonal	0	0	0	0	0	0
Large Dedicated	0	0	0	0	0	0
Large Seasonal	0	0	0	0	0	0
Total	754	181	0	36	148	1119

Table 2.7: Total catch in metric tons per year by fishing gear and boat size category in WPP 716 for the most recent 365 days

Total Catch	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	366	844	0	67	21	1298
Nano Seasonal	1902	60	0	4	513	2479
Small Dedicated	0	137	0	12	0	149
Small Seasonal	0	0	0	0	0	0
Medium Dedicated	119	0	0	0	0	119
Medium Seasonal	0	0	0	0	0	0
Large Dedicated	0	0	0	0	0	0
Large Seasonal	0	0	0	0	0	0
Total	2387	1041	0	84	534	4046

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.8: Top 20 species by volume in deepwater demersal fisheries with % immature fish in the catch in WPP 716 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
•	$\overline{\mathrm{MT}}$	%	% Weight	% Number	% Weight	Immature
Etelis radiosus	1447	36	36	38	14	High
Etelis coruscans	249	6	42	39	22	High
Caranx ignobilis	232	6	48	97	91	High
Lutjanus gibbus	195	5	52	52	27	High
Caranx sexfasciatus	194	5	57	0	0	Low
Sphyraena barracuda	150	4	61	48	22	High
Aphareus rutilans	149	4	65	78	40	High
Gymnocranius grandoculis	145	4	68	14	3	Med
Pristipomoides multidens	116	3	71	NA	NA	
Erythrocles schlegelii	113	3	74	0	0	Low
Pristipomoides filamentosus	87	2	76	95	85	High
Aprion virescens	86	2	78	NA	NA	
Pristipomoides sieboldii	85	2	80	78	69	High
Etelis sp.	68	2	82	38	13	High
Lethrinus rubrioperculatus	68	2	84	2	0	Low
Lutjanus boutton	67	2	85	4	1	Low
Paracaesio xanthura	66	2	87	42	25	High
Seriola rivoliana	59	1	88	40	14	High
Lethrinus olivaceus	50	1	90	NA	NA	
Elagatis bipinnulata	47	1	91	6	2	Low
Total Top 20 Species	3676	91	91	42	19	High
Total Top 100 Species	4046	100	100	42	20	High

Table 2.9: Top 20 species by volume in Dropline fisheries with % immature fish in the catch in WPP 716 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
Etelis radiosus	1206	51	51	38	14	High
Etelis coruscans	208	9	59	39	22	High
Aphareus rutilans	111	5	64	78	40	High
Erythrocles schlegelii	95	4	68	0	0	Low
Pristipomoides sieboldii	71	3	71	78	69	High
Caranx sexfasciatus	70	3	74	0	0	Low
Sphyraena barracuda	70	3	77	48	22	High
Pristipomoides filamentosus	64	3	79	95	85	High
Etelis sp.	56	2	82	38	13	High
Paracaesio xanthura	55	2	84	42	25	High
Lutjanus gibbus	50	2	86	79	55	High
Caranx ignobilis	47	2	88	NA	NA	
Elagatis bipinnulata	40	2	90	6	2	Low
Seriola rivoliana	32	1	91	40	14	High
Variola albimarginata	28	1	92	17	5	Med
Lutjanus boutton	21	1	93	9	4	Low
Pristipomoides multidens	18	1	94	NA	NA	
Aprion virescens	17	1	95	NA	NA	
Paracaesio kusakarii	17	1	95	96	80	High
Gymnocranius grandoculis	15	1	96	NA	NA	
Total Top 20 Species	2290	96	96	51	21	High
Total Top 100 Species	2387	100	100	51	21	High

Table 2.10: Top 20 species by volume in Longline fisheries with % immature fish in the catch in WPP 716 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
Caranx ignobilis	152	15	15	NA	NA	
Lutjanus gibbus	120	11	26	33	16	High
Gymnocranius grandoculis	111	11	37	14	3	Med
Caranx sexfasciatus	98	9	46	NA	NA	
Pristipomoides multidens	83	8	54	NA	NA	
Sphyraena barracuda	61	6	60	NA	NA	
Aprion virescens	58	6	65	NA	NA	
Lethrinus rubrioperculatus	54	5	71	2	0	Low
Etelis radiosus	50	5	75	NA	NA	
Lethrinus olivaceus	37	4	79	NA	NA	
Lutjanus boutton	37	4	83	0	0	Low
Lutjanus argentimaculatus	25	2	85	NA	NA	
Seriola rivoliana	19	2	87	NA	NA	
Aphareus rutilans	18	2	88	NA	NA	
Lutjanus bohar	16	2	90	NA	NA	
Gymnocranius griseus	14	1	91	NA	NA	
Pristipomoides filamentosus	12	1	93	NA	NA	
Lutjanus rivulatus	11	1	94	NA	NA	
Etelis coruscans	8	1	94	NA	NA	
Diagramma pictum	7	1	95	NA	NA	
Total Top 20 Species	989	95	95	17	7	Medium
Total Top 100 Species	1041	100	100	17	7	Medium

Table 2.11: Top 20 species by volume in Gillnet fisheries with % immature fish in the catch in WPP 716 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
Total Top 20 Species	0	0	0	NA	NA	NA
Total Top 100 Species	0	0	0	NA	NA	NA

Table 2.12: Top 20 species by volume in Trap fisheries with % immature fish in the catch in WPP 716 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
Epinephelus coioides	29	34	34	19	7	Med
Lutjanus malabaricus	18	22	56	93	83	High
Lutjanus johnii	17	20	76	86	67	High
Lethrinus lentjan	3	4	80	1	0	Low
Diagramma pictum	3	4	84	17	7	Med
Lutjanus erythropterus	3	4	88	56	33	High
Caranx ignobilis	3	3	91	97	91	High
Plectropomus maculatus	2	3	93	1	1	Low
Lutjanus russelli	1	2	95	7	4	Low
Pinjalo pinjalo	1	1	96	48	15	High
Lutjanus argentimaculatus	1	1	97	59	45	High
Lutjanus vitta	1	1	97	1	0	Low
Caranx tille	1	1	98	NA	NA	
Pomadasys kaakan	0	1	99	36	23	High
Epinephelus bleekeri	0	0	99	NA	NA	
Lutjanus timorensis	0	0	99	54	37	High
Plectropomus leopardus	0	0	99	NA	NA	
Epinephelus heniochus	0	0	99	NA	NA	
Carangoides chrysophrys	0	0	100	NA	NA	
Caranx sexfasciatus	0	0	100	NA	NA	
Total Top 20 Species	83	100	100	60	40	High
Total Top 100 Species	84	100	100	60	40	High

Table 2.13: Top 20 species by volume in Mixgears fisheries with % immature fish in the catch in WPP 716 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
Etelis radiosus	191	36	36	NA	NA	
Etelis coruscans	33	6	42	NA	NA	
Caranx ignobilis	31	6	48	NA	NA	
Lutjanus gibbus	26	5	52	NA	NA	
Caranx sexfasciatus	26	5	57	NA	NA	
Sphyraena barracuda	20	4	61	NA	NA	
Aphareus rutilans	20	4	65	NA	NA	
Gymnocranius grandoculis	19	4	68	NA	NA	
Pristipomoides multidens	15	3	71	NA	NA	
Erythrocles schlegelii	15	3	74	NA	NA	
Pristipomoides filamentosus	12	2	76	NA	NA	
Aprion virescens	11	2	78	NA	NA	
Pristipomoides sieboldii	11	2	80	NA	NA	
Etelis sp.	9	2	82	NA	NA	
Lethrinus rubrioperculatus	9	2	84	NA	NA	
Lutjanus boutton	9	2	85	NA	NA	
Paracaesio xanthura	9	2	87	NA	NA	
Seriola rivoliana	8	1	88	NA	NA	
Lethrinus olivaceus	7	1	90	NA	NA	
Elagatis bipinnulata	6	1	91	NA	NA	
Total Top 20 Species	485	91	91	NA	NA	NA
Total Top 100 Species	534	100	100	NA	NA	NA

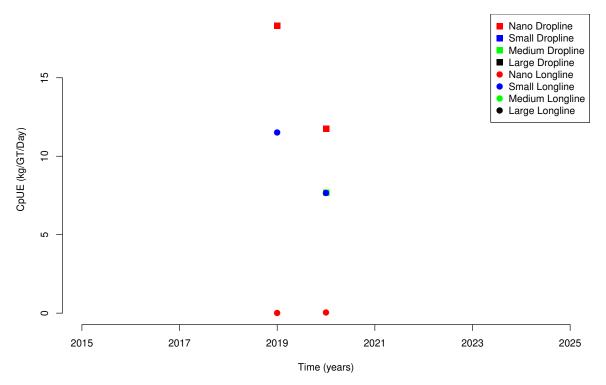


Figure 2.5: Catch per Unit of Effort per calendar year for Etelis radiosus in WPP 716 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

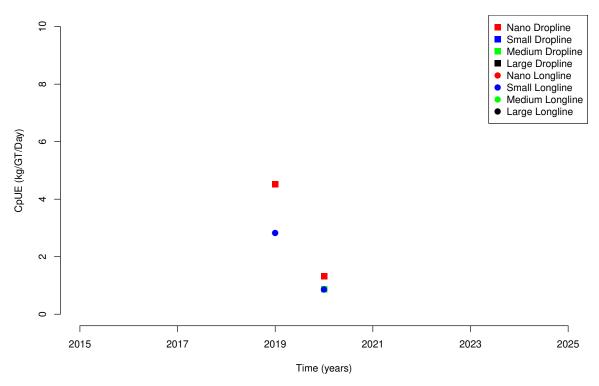


Figure 2.6: Catch per Unit of Effort per calendar year for Etelis coruscans in WPP 716 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

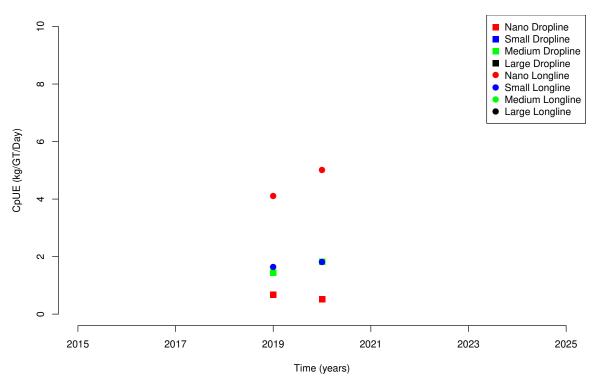


Figure 2.7: Catch per Unit of Effort per calendar year for Caranx ignobilis in WPP 716 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

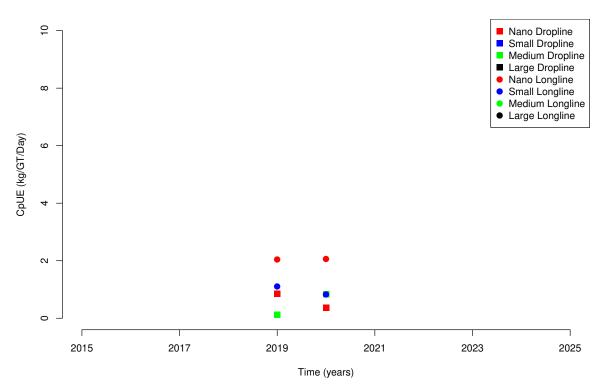


Figure 2.8: Catch per Unit of Effort per calendar year for Lutjanus gibbus in WPP 716 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

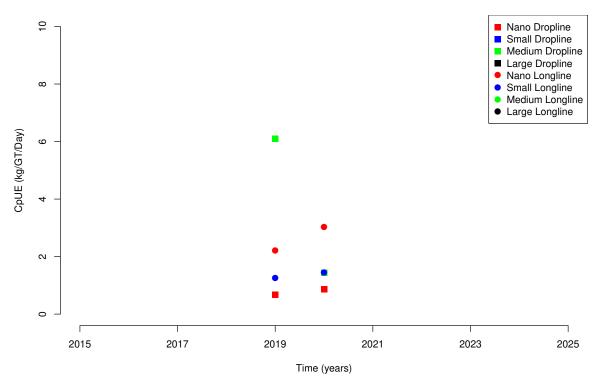


Figure 2.9: Catch per Unit of Effort per calendar year for Caranx sexfasciatus in WPP 716 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

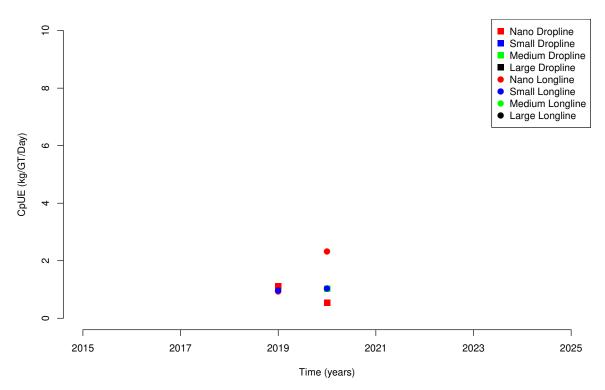


Figure 2.10: Catch per Unit of Effort per calendar year for Sphyraena barracuda in WPP 716 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

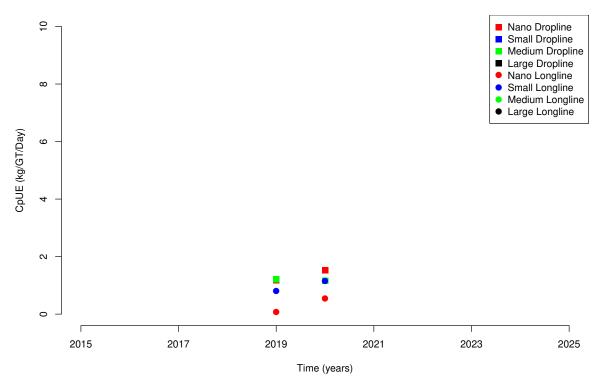


Figure 2.11: Catch per Unit of Effort per calendar year for Aphareus rutilans in WPP 716 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	9	Home District	Boat Size	Gear	N	Total GT
1	571	Desa Sungai Kuruk III	Aceh Tamiang	Nano	Mixgears	2	6
2	571	Desa Sungai Kuruk III	Aceh Tamiang	Small	Mixgears	6	34
3	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Dropline	1	2
4	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Trap	5	10
5	571	PP. Pasiran	Kota Sabang	Nano	Dropline	3	4
6	571	Pangkalan Susu	Langkat	Nano	Mixgears	38	114
7	571	Pelabuhan Ujung Kampung	Langkat	Medium	Mixgears	3	39
8	571	Pelabuhan Ujung Kampung	Langkat	Nano	Mixgears	5	23
9	571	Pelabuhan Ujung Kampung	Langkat	Nano	Trap	1	4
10	571	Pelabuhan Ujung Kampung	Langkat	Small	Mixgears	2	15
11	571	PPI. Pangkalan Brandan	Langkat	Medium	Mixgears	1	10
12	571	PPI. Pangkalan Brandan	Langkat	Nano	Mixgears	33	135
13	571	PPI. Pangkalan Brandan	Langkat	Small	Mixgears	7	42
14	571	PP. Ujung Blang	Lhokseumawe	Nano	Longline	7	11
15	571	Belawan	Medan	Small	Mixgears	10	50
16	571	Teluk Mengkudu	Serdang Bedagai	Small	Longline	5	48
17	571	TPI. Sialang Buah	Serdang Bedagai	Small	Longline	5	48
18	572	Kuala Bubon	Aceh Barat	Medium	Mixgears	2	21
19	572	Kuala Bubon	Aceh Barat	Small	Mixgears	2	14
20	572	PP. Meulaboh	Aceh Barat	Nano	Mixgears	5	17
21	572	PP. Ujoeng Baroh	Aceh Barat	Medium	Mixgears	1	10
22	572	PP. Ujoeng Baroh	Aceh Barat	Nano	Mixgears	1	3
23	572	PP. Ujong Baroeh	Aceh Barat	Nano	Mixgears	3	10
24	572	PP. Ujong Baroeh	Aceh Barat	Small	Dropline	2	13
25	572	PP. Ujong Baroeh	Aceh Barat	Small	Mixgears	18	107
26	572	Susoh	Aceh Barat Daya	Medium	Dropline	1	11
27	572	Susoh	Aceh Barat Daya	Small	Dropline	2	12
28	572	Desa Lampuyang	Aceh Besar	Nano	Dropline	15	22
29	572	PP. Lhok Bengkuang	Aceh Selatan	Nano	Mixgears	10	36
30	572	PP. Lhok Bengkuang	Aceh Selatan	Small	Mixgears	37	236
31	572	PP. Lampulo	Banda Aceh	Nano	Dropline	1	4
32	572	PP. Lampulo	Banda Aceh	Nano	Longline	2	6
33	572	PP. Lampulo	Banda Aceh	Small	Dropline	8	49
34	572	PP. Lampulo	Banda Aceh	Small	Longline	1	6
35	572	PPS Lampulo	Banda Aceh	Small	Dropline	9	63
36	572	PP. Pulau Baai	Bengkulu	Large	Trap	1	31
37	572	PP. Pulau Baai	Bengkulu	Medium	Dropline	2	34
38	572	PP. Pulau Baai	Bengkulu	Medium	Gillnet	7	153
39	572	PP. Pulau Baai	Bengkulu	Medium	Mixgears	5	61
40	572	PP. Pulau Baai	Bengkulu	Nano	Dropline	5	21
41	572	PP. Pulau Baai	Bengkulu	Nano	Mixgears	2	8
42	572	PP. Pulau Baai	Bengkulu	Small	Dropline	23	130
43	572	PP. Pulau Baai	Bengkulu	Small	Gillnet	1	6
44	572	PP. Pulau Baai	Bengkulu	Small	Mixgears	2	12
45	572	PP. Muara Angke	Jakarta	Large	Dropline	1	158
46	572	PP. Sikakap	Kepulauan Mentawai	Nano	Dropline	1	3
47	572	PP. Tuapejat	Kepulauan Mentawai	Medium	Dropline	2	24
48	572	PP. Tuapejat	Kepulauan Mentawai	Small	Dropline	2	18
49	572	PP. Muara Piluk Bakauheni	Lampung	Nano	Longline	14	39
50	572	PP. Muara Piluk Bakauheni	Lampung	Small	Longline	1	5
51	572	Botolakha	Nias	Small	Dropline	25	197
52	572	Helera	Nias	Nano	Mixgears	13	21
53	572	Helera	Nias	Small	Mixgears	2	11
54	572	Teluk Dalam	Nias	Nano	Dropline	5	18
		M D I	Padang	Medium	Dropline	1	12
55	572	Muara Padang					
56	572	Muara Padang	Padang	Medium	Longline	1	11

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

59 F. Bungus	Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
61 572 P.P. Muaro Padang Medium Dropline 2 23 63 572 P.P. Muaro Padang Medium Misgears 2 24 64 572 P.P. Muaro Padang Small Dropline 1 5 65 572 P.P. Muaro Padang Small Mropline 2 19 66 572 P.P. Labuan Pandeglang Small Mropline 2 19 68 572 P.P. Sibolga Sibolga Medium Trap 4 64 70 572 P.P. Sibolga Sibolga Nano Trap 4 64 71 572 P.P. Sibolga Sibolga Small Tropline 2 3 18 72 P.P. Sibolga Sibolga Small Tropline 6 35 18 18 18 18 18 18 18 18 18 18 18 18			PP. Bungus	Padang	Medium	Mixgears	1	
62 572 PP. Muaro Padang Medium Mixgears 2 24 63 572 PP. Muaro Padang Small Dropline 1 5 64 572 PP. Muaro Padang Small Longline 2 19 66 572 PP. Muaro Padang Small Longline 2 19 67 572 PP. Labuun Padang Small Mixgears 4 29 68 572 PP. Sibolga Sibolga Nano Dropline 4 14 69 572 PP. Sibolga Sibolga Nano Dropline 4 14 71 572 PP. Sibolga Sibolga Small Dropline 3 18 71 573 Desa Alor Keel Alor Nano Dropline 25 17 4 573 Sacoback Kedonganan Badung Nano Dropline 25 17 573			_					
63 572 PP. Musaro Padang Medium Misgears 2 24 65 572 PP. Musaro Padang Small Longline 2 19 66 572 PP. Musaro Padang Small Longline 2 19 67 572 PP. Bubuan Padang Small Dropline 2 29 68 572 PP. Sibolsa Sibolga Mano Dropline 4 64 70 572 PP. Sibolga Sibolga Nano Dropline 1 4 14 70 572 PP. Sibolga Sibolga Small Dropline 3 18 71 573 Desa Alor Kecil Alor Nano Dropline 6 5 573 S73 Desa Alor Kecil Alor Nano Dropline 5 6 6 573 Atapupu Belu Nano Dropline 5 6 75 </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>				_				
64 572 PP. Muaro Padang Small Longline 1 5 66 572 PP. Muaro Padang Small Longline 2 19 66 572 PP. Muaro Padang Small Mixears 4 29 67 572 PP. Sibolga Sibolga Mano Trap 4 64 69 372 PP. Sibolga Sibolga Nano Dropline 4 14 70 572 PP. Sibolga Sibolga Small Dropline 3 18 71 572 PP. Sibolga Sibolga Small Dropline 3 18 73 573 Desa Alor Keell Alor Nano Dropline 25 57 573 PP. Pancer Baryuwangi Nano Dropline 25 57 573 PP. Pancer Baryuwangi Nano Dropline 25 50 75 573 PP. Bape Bima<				<u> </u>		_		
65 572 PP. Muaro Padang Small Mixgears 2 19 66 572 PP. Labuan Padeglang Small Dropline 29 152 67 572 PP. Sibologa Sibolga Mano Dropline 4 64 68 572 PP. Sibologa Sibolga Nano Dropline 4 64 70 572 PP. Sibologa Sibolga Small Dropline 2 47 71 572 PP. Sibologa Sibolga Small Dropline 25 17 74 573 Sra Desa Alor Kecil Alor Nano Dropline 6 53 75 373 PP. Fancer Banyuwanj Nano Dropline 6 6 75 373 PP. Sape Bima Nano Dropline 5 6 753 374 Alexin Dropline 10 20 2 753 375								
66 572 PP. Labuan Padang Small Misgears 4 29 68 572 PP. Sibolga Sibolga Medium Trap 4 64 68 572 PP. Sibolga Sibolga Nano Dropline 4 14 71 572 PP. Sibolga Sibolga Small Dropline 3 18 71 572 PP. Sibolga Sibolga Small Dropline 3 18 71 572 PP. Sibolga Sibolga Small Trap 6 35 73 573 Desa Alor Kecil Alor Nano Dropline 25 17 74 573 Belance Badung Nano Dropline 20 56 75 573 PP. Rompo Bima Nano Dropline 30 56 75 573 PP. Rompo Bima Nano Dropline 10 50 50 78								
67 572 PP. Labuan Pandeglang Small Dropline 29 152 68 572 PP. Sibolga Sibolga Medium Trap 4 64 69 572 PP. Sibolga Sibolga Nano Trap 12 47 71 572 PP. Sibolga Sibolga Small Dropline 3 18 72 572 PP. Sibolga Sibolga Small Dropline 3 18 72 572 PP. Sibolga Sibolga Small Dropline 25 17 74 573 SrA Developmen Badung Nano Dropline 25 16 75 573 Atapupu Belu Nano Dropline 5 6 76 573 Atapupu Belu Nano Dropline 5 6 77 573 PP. Sape Bima Nano Dropline 5 6 8573								
68 572 PP. Sibolga Sibolga Medium Trap 4 14 70 572 PP. Sibolga Sibolga Nano Dropline 4 14 70 572 PP. Sibolga Sibolga Small Dropline 3 18 72 572 PP. Sibolga Sibolga Small Dropline 3 18 73 573 Desa Alor Kecil Alor Nano Dropline 25 17 74 573 Redonganan Badung Nano Dropline 20 306 6 75 573 PP. Pancer Banyuwangi Nano Dropline 50 30 306 6 6 75 573 PP. Sape Bima Nano Dropline 50				_				
69 572 PP. Shologa Sibolga Nano Dropline 4 14 70 572 PP. Sibolga Sibolga Small Dropline 3 18 71 572 PP. Sibolga Sibolga Small Dropline 3 18 72 572 PP. Sibolga Sibolga Small Trap 6 35 73 573 Desa Alor Kecil Alor Nano Dropline 25 17 74 573 Kedonganan Badung Nano Dropline 30 36 76 573 Atapupu Belu Nano Dropline 50 50 78 573 PP. Rope Bima Nano Dropline 50 50 78 573 PP. Sape Bima Nano Dropline 103 170 79 573 PP. Sape Bima Nano Dropline 10 26 81 573 PP. Sape Bima Nano Longine 12 268 2 573 PP. Sape								
70 5722 PP. Sibolga Sibolga Nano Trap 12 47 71 572 PP. Sibolga Sibolga Small Dropline 3 18 72 572 PP. Sibolga Sibolga Small Trap 6 35 73 373 Desa Alor Kecil Alor Nano Dropline 26 17 74 573 Desa Alor Kecil Alor Nano Dropline 30 56 75 573 PP. Panere Bandung Nano Dropline 50 50 76 573 Atapupu Beln Nano Dropline 50 50 78 573 PP. Sape Bima Nano Dropline 10 26 80 573 Jetis Gual Medium Dropline 12 268 81 573 Pelabuhan Benoa Denpasar Medium Dropline 12 268 82								
71 572 PP. Sibolga Sibolga Small Trap 3 73 573 Desa Alor Kecil Alor Nano Dropline 25 17 74 573 Kedonganan Badung Nano Dropline 25 17 75 573 PP. Pencer Banyuwangi Nano Dropline 50 56 75 573 PP. Rompo Bima Nano Dropline 50 50 78 573 PP. Sape Bima Nano Dropline 50 50 78 573 PP. Sape Bima Nano Dropline 10 20 26 81 573 PP. Sape Bima Nano Longtine 30 26 81 573 Pelabuhan Benoa Denpasar Medium Dropline 12 22 84 573 PP. Scroadu Dompu Nano Longtine 1 22 85 573 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>						_		
72 572 PP. Sibolga Sibolga Small Trap 6 35 73 573 Desa Alor Kecil Alor Nano Dropline 25 17 74 573 Kedonganan Badung Nano Dropline 30 36 75 573 PP. Panece Banyuwangi Nano Dropline 50 50 76 573 PP. Rompo Bima Nano Dropline 50 50 78 573 PP. Sape Bima Nano Dropline 10 267 80 573 Jetis Cilacap Nano Longline 30 26 81 573 Jelabuhan Benoa Denpasar Medium Dropline 12 226 82 573 Pelabuhan Benoa Denpasar Medium Dropline 1 27 83 573 PP. Soroadu Dompu Nano Longline 11 6 85						_		
73 573 Desa Alor Kecil Alor Nano Dropline 25 17 74 573 P.P. Pancer Banyuwangi Nano Dropline 30 56 75 573 P.P. Pancer Banyuwangi Nano Dropline 50 50 76 573 P.P. Sape Bima Nano Dropline 50 50 78 573 P.P. Sape Bima Nano Dropline 10 26 80 573 P.P. Sape Bima Nano Longline 20 26 81 573 P.P. Sape Bima Nano Longline 20 26 81 573 Pelabuhan Benoa Denpasar Medium Dropline 1 27 15 5 573 P.P. Soroadu Dompu Nano Longline 2 27 83 573 P.P. Soroadu Dompu Nano Longline 1 22 26 85 573								
74 573 Kedonganan Baduug Nano Mixgears 30 36 75 573 P.P. Pancer Banyuwangi Nano Dropline 5 6 76 573 Atapupu Belu Nano Dropline 5 6 77 573 P.P. Rompo Bima Nano Dropline 50 50 78 573 P.P. Sape Bima Nano Mropline 12 26 80 573 Jetis Cilacap Nano Longline 30 26 81 573 Pelabuhan Benoa Denpasar Medium Longline 1 27 84 573 P.P. Soroadu Dompu Nano Dropline 1 22 84 573 P.P. Soroadu Dompu Nano Longline 1 2 85 573 P.P. Soroadu Dompu Nano Longline 1 2 85 573			=	_				
75 573 PP. Pancer Banyuwangi Nano Dropline 300 306 76 573 Atapupu Belu Nano Dropline 5 6 77 573 PP. Sape Bima Nano Dropline 103 170 80 573 PP. Sape Bima Nano Dropline 102 267 80 573 Jets Cilacap Nano Mixgears 109 267 81 573 Pelabuhan Benoa Denpasar Medium Dropline 12 268 81 573 Pelabuhan Benoa Denpasar Medium Dropline 27 15 84 573 PP. Soroadu Dompu Nano Longline 21 22 84 573 PP. Soroadu Dompu Nano Longline 21 46 86 573 PP. Soroadu Dompu Nano Longline 12 42 87								
76 573 Atapupu Belu Nano Dropline 5 6 77 573 PP. Sape Bima Nano Dropline 13 170 79 573 PP. Sape Bima Nano Longline 30 26 81 573 PP. Sape Bima Nano Longline 30 26 81 573 Pelabuhan Benoa Denpasar Medium Dropline 12 268 82 573 PP. Soroadu Dompu Mano Longline 1 27 84 573 PP. Soroadu Dompu Nano Longline 1 27 15 85 573 PP. Soroadu Dompu Nano Longline 20 40 85 573 PP. Soroadu Dompu Nano Longline 20 40 85 573 PP. Soroadu Dompu Nano Longline 12 20 85						_		
77 573 PP. Sape Bima Nano Dropline 50 50 78 573 PP. Sape Bima Nano Dropline 103 170 79 573 PP. Sape Bima Nano Longline 30 26 80 573 Pelabuhan Benoa Denpasar Medium Dropline 12 268 82 573 Pelabuhan Benoa Denpasar Medium Dropline 1 27 83 573 PP. Fenau Kupang Denpasar Medium Dropline 1 27 84 573 PP. Soroadu Dompu Nano Longline 1 6 85 573 PP. Soroadu Dompu Nano Longline 15 16 86 573 PP. Soroadu Dompu Nano Longline 15 16 85 573 PP. Mayangan Medium Dropline 1 27 15 15 16								
78 573 PP. Sape Bima Nano Dropline 103 170 79 573 PP. Sape Bima Nano Mixgears 109 267 80 573 Jetis Cilacap Nano Mixgears 109 268 81 573 Pelabuhan Benoa Denpasar Medium Dropline 12 268 82 573 PP. Tenau Kupang Denpasar Medium Longline 1 27 84 573 PP. Soroadu Dompu Nano Longline 27 15 85 573 PP. Soroadu Dompu Nano Longline 21 40 86 573 Pengambengan Jembrana Nano Longline 15 16 87 573 Pen Kuning Jembrana Nano Longline 1 27 88 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
79 573 P.Sape Bima Nano Mixgears 109 267 80 573 Jetis Cilacap Nano Longline 30 26 81 573 Pelabuhan Benoa Denpasar Medium Longline 1 27 83 573 PP. Tenau Kupang Denpasar Medium Dropline 1 27 84 573 PP. Soroadu Dompu Nano Longline 1 6 85 573 PP. Soroadu Dompu Nano Longline 1 6 86 573 Pengambenga Jembrana Nano Longline 15 16 85 573 Pengambenga Kupang Medium Dropline 1 27 86 573 Pen Kuning Kupang Medium Dropline 1 27 85 573 PP. Oeba Kupang Kupang Medium Dropline 1 25 5 5								
80 573 Jetis Cilacap Nano Longline 30 26 81 573 Pelabuhan Benoa Denpasar Medium Dropline 12 268 82 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 83 573 PP. Soroadu Dompu Nano Dropline 27 15 84 573 PP. Soroadu Dompu Nano Longline 10 6 85 573 PP. Soroadu Dompu Nano Longline 11 6 86 573 Pengambengan Jembrana Nano Longline 10 126 86 573 Pengambengan Jembrana Nano Longline 15 126 40 87 573 Pek Kuning Jembrana Nano Longline 15 126 42 42 12 12 12 12 12 12 12 12			•					
81 573 Pelabuhan Benoa Denpasar Medium Dropline 12 268 82 573 Pelabuhan Benoa Denpasar Medium Longline 1 27 84 573 PP. Soroadu Dompu Nano Dropline 27 15 85 573 PP. Soroadu Dompu Nano Longline 20 40 87 573 PP. Soroadu Dompu Nano Longline 21 6 86 573 Pengambengan Jembrana Nano Longline 11 6 88 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 88 573 PP. Abauhan Benoa Kupang Medium Longline 1 29 90 573 PP. Oeba Kupang Kupang Medium Longline 1 29 90 573 PP. Tenau Kupang Kupang Medium Dropline 2 48 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>			_					
82 573 Pelabuhan Benoa Denpasar Medium Medium Dropline 1 27 83 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 84 573 PP. Soroadu Dompu Nano Longline 20 40 85 573 PP. Soroadu Dompu Nano Longline 20 40 86 573 PP. Soroadu Jembrana Nano Longline 10 40 87 573 Yeh Kuning Jembrana Nano Longline 10 126 88 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 89 573 PP. Mayangan Kupang Medium Dropline 1 29 95 573 PP. Tenau Kupang Kupang Medium Dropline 2 48 92 573 PP. Tenau Kupang Kupang Medium Dropline 6 22 94 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>						_		
83 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 84 573 PP. Soroadu Dompu Nano Dropline 27 15 85 573 PP. Soroadu Dompu Nano Longline 10 40 86 573 Pengambengan Jembrana Nano Longline 150 40 87 573 Pela Kuning Jembrana Nano Longline 12 27 89 573 Pelabuhan Benoa Kupang Medium Dropline 1 29 90 573 PP. Mayangan Kupang Medium Dropline 1 29 90 573 PP. Deba Kupang Kupang Medium Dropline 2 48 93 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Small Dropline 6 22								
84 573 PP. Soroadu Dompu Nano Dropline 27 15 85 573 PP. Soroadu Dompu Nano Longline 11 6 86 573 Pengambengan Jembrana Nano Longline 150 126 88 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 89 573 PP. Mayangan Kupang Medium Longline 1 29 90 573 PP. Mayangan Kupang Medium Dropline 5 5 91 573 PP. Tenau Kupang Kupang Medium Dropline 2 48 92 573 PP. Tenau Kupang Kupang Medium Dropline 2 48 92 573 PP. Tenau Kupang Kupang Mano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Nano Dropline 1 29								
85 573 PP. Soroadu Dompu Nano Longline 11 6 86 573 Pengambengan Jembrana Nano Longline 150 126 87 573 Yeh Kuning Jembrana Nano Longline 150 126 88 573 Pelabuhan Benoa Kupang Medium Longline 1 27 89 573 PP. Mayangan Kupang Medium Longline 1 29 90 573 PP. Oeba Kupang Kupang Medium Dropline 2 48 91 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Mano Dropline 2 14 95 573 PP. Tenau Kupang Kupang Nano Dropline 2 174 <				-		-		
86 573 Pengambengan Jembrana Nano Longline 20 40 87 573 Yeh Kuning Jembrana Nano Longline 150 126 88 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 89 573 PP. Mayangan Kupang Medium Dropline 1 29 90 573 PP. Oeba Kupang Kupang Medium Dropline 5 5 91 573 PP. Tenau Kupang Kupang Medium Dropline 21 365 92 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Nano Dropline 21 174 95 573 Desa waijarang Lembata Nano Dropline 21 2				-				
87 573 Yeh Kuning Jembrana Nano Longline 150 126 88 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 89 573 PP. Mayangan Kupang Medium Longline 1 29 90 573 PP. Oeba Kupang Kupang Nano Dropline 5 5 91 573 PP. Tenau Kupang Kupang Medium Dropline 21 365 92 573 PP. Tenau Kupang Kupang Nano Dropline 2 48 93 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Nano Dropline 20 14 95 573 Tablolong Kupang Kupang Nano Dropline 20 14 96 573 Desa waijarang Lembata Nano Dropline 20 14								
88 573 Pelabuhan Benoa Kupang Medium Longline 1 27 89 573 PP. Mayangan Kupang Medium Longline 1 29 90 573 PP. Oeba Kupang Kupang Nano Dropline 5 5 91 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 174 95 573 Tablolong Kupang Kupang Nano Dropline 20 14 97 573 Tabolango Lembata Nano Dropline 20 14 98 573 PP. Tanjung Luar Lombok Timur Nano Dropline 30 30 99 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9								
89 573 PP. Mayangan Kupang Medium Longline 1 29 90 573 PP. Oeba Kupang Kupang Nano Dropline 5 5 91 573 PP. Tenau Kupang Kupang Medium Dropline 21 365 92 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Nano Dropline 22 174 95 573 Tablolong Kupang Kupang Nano Dropline 20 14 95 573 Tablolong Kupang Lembata Nano Dropline 20 14 95 573 TPAnjung Luar Lombok Timur Nano Dropline 30 3			9			_		
90 573 PP. Oeba Kupang Kupang Nano Dropline 5 5 91 573 PP. Tenau Kupang Kupang Medium Dropline 21 365 92 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Nano Dropline 22 174 95 573 PP. Tenau Kupang Kupang Nano Dropline 20 14 95 573 Posa waijarang Lembata Nano Dropline 20 14 97 573 Tapolango Lembata Nano Dropline 20 14 98 573 PP. Tanjung Luar Lombok Timur Nano Dropline 30 30 100 573 PP. Tanjung Luar Lombok Timur Small Dropline 11								
91 573 PP. Tenau Kupang Kupang Medium Dropline 21 365 92 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Nano Dropline 62 22 94 573 PP. Tenau Kupang Kupang Small Dropline 62 174 95 573 Tablolong Kupang Kupang Nano Dropline 11 22 96 573 Desa waijarang Lembata Nano Dropline 20 14 97 573 Tapolango Lembata Nano Dropline 20 14 98 573 PP. Tanjung Luar Lombok Timur Nano Dropline 30 30 99 573 PP. Tanjung Luar Lombok Timur Nano Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
92 573 PP. Tenau Kupang Kupang Medium Longline 2 48 93 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Small Dropline 22 174 95 573 Tablolong Kupang Kupang Nano Dropline 22 174 96 573 Desa waijarang Lembata Nano Dropline 20 14 97 573 Tapolango Lembata Nano Dropline 20 14 98 573 PP. Tanjung Luar Lombok Timur Nano Dropline 30 30 99 573 PP. Tanjung Luar Lombok Timur Nano Longline 50 70 100 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Lanjung Luar Lombok Timur Small Dropline								
93 573 PP. Tenau Kupang Kupang Nano Dropline 6 22 94 573 PP. Tenau Kupang Kupang Small Dropline 22 174 95 573 Tablolong Kupang Kupang Nano Dropline 11 22 96 573 Desa waijarang Lembata Nano Dropline 20 14 98 573 Tapolango Lembata Nano Mixgears 20 14 98 573 PP. Tanjung Luar Lombok Timur Nano Dropline 30 30 99 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Gladang Mangarai Barat Nano Dropline 6								
94 573 PP. Tenau Kupang Kupang Small Dropline 22 174 95 573 Tablolong Kupang Kupang Nano Dropline 11 22 96 573 Desa waijarang Lembata Nano Dropline 20 14 97 573 Tapolango Lembata Nano Mixgears 20 14 98 573 PP. Tanjung Luar Lombok Timur Nano Dropline 30 30 99 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Cikidang Pangandara Nano Dropline <								
95 573 Tablolong Kupang Kupang Nano Dropline 11 22 96 573 Desa waijarang Lembata Nano Dropline 20 14 97 573 Tapolango Lembata Nano Mixgears 20 14 98 573 PP. Tanjung Luar Lombok Timur Nano Dropline 30 30 99 573 PP. Tanjung Luar Lombok Timur Nano Longline 50 70 100 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Cikidang Pangandaran Nano Dropline								
96 573 Desa waijarang Lembata Nano Dropline 20 14 97 573 Tapolango Lembata Nano Mixgears 20 14 98 573 PP. Tanjung Luar Lombok Timur Nano Dropline 30 30 99 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 PP. Ianjung Luar Lombok Timur Small Dropline 1 9 102 573 TPI Kampung Ujung Manggarai Barat Nano Dropline 60 74 103 573 PP. Cikidang Pangandaran Nano Droplin								
97573TapolangoLembataNanoMixgears201498573PP. Tanjung LuarLombok TimurNanoDropline303099573PP. Tanjung LuarLombok TimurNanoLongline5070100573PP. Tanjung LuarLombok TimurSmallDropline19101573Pulau MaringkikLombok TimurSmallDropline1193102573TPI Kampung UjungManggarai BaratNanoDropline6074103573PP CikidangPangandaranSmallGillnet850104573PP. CikidangPangandaranNanoGillnet313105573Batutua RoteRoteNanoDropline88106573Oesely RoteRoteNanoDropline11107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47100573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallDropline16114711PP. SungailiatBangka<								
98573PP. Tanjung LuarLombok TimurNanoDropline303099573PP. Tanjung LuarLombok TimurNanoLongline5070100573PP. Tanjung LuarLombok TimurSmallDropline19101573Pulau MaringkikLombok TimurSmallDropline1193102573TPI Kampung UjungManggarai BaratNanoDropline6074103573PP CikidangPangandaranSmallGillnet850104573PP. CikidangPangandaranNanoGillnet313105573Batutua RoteRoteNanoDropline88106573Oesely RoteRoteNanoDropline11107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline712111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallDropline16114711PP. SungailiatBangkaSm								
99 573 PP. Tanjung Luar Lombok Timur Nano Longline 50 70 100 573 PP. Tanjung Luar Lombok Timur Small Dropline 1 9 101 573 Pulau Maringkik Lombok Timur Small Dropline 11 93 102 573 TPI Kampung Ujung Manggarai Barat Nano Dropline 60 74 103 573 PP. Cikidang Pangandaran Small Gillnet 8 50 104 573 PP. Cikidang Pangandaran Nano Gillnet 3 13 105 573 Batutua Rote Rote Nano Dropline 8 8 106 573 Oesely Rote Rote Nano Dropline 1 1 107 573 Papela Darat Rote Nano Dropline 9 9 108 573 Papela Tanjung Rote Nano Dropline 9 9 109 573 Rote Rote Nano Dropline 9 9 109 573 Rote Rote Nano Dropline 4 7 110 573 Sukabumi Sukabumi Nano Dropline 50 50 111 573 Wini Timor Tengah Utara Nano Dropline 7 12 112 711 PP Baturusa Pangkal Batam Bangka Small Trap 4 24 113 711 PP. Sungailiat Bangka Small Dropline 1 6 114 711 PP. Sungailiat Bangka Small Gillnet 11 67 115 711 PP. Sungailiat Bangka Small Mixgears 2 12								
100573PP. Tanjung LuarLombok TimurSmallDropline19101573Pulau MaringkikLombok TimurSmallDropline1193102573TPI Kampung UjungManggarai BaratNanoDropline6074103573PP CikidangPangandaranSmallGillnet850104573PP. CikidangPangandaranNanoGillnet313105573Batutua RoteRoteNanoDropline88106573Oesely RoteRoteNanoDropline99108573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
101573Pulau MaringkikLombok TimurSmallDropline1193102573TPI Kampung UjungManggarai BaratNanoDropline6074103573PP CikidangPangandaranSmallGillnet850104573PP. CikidangPangandaranNanoGillnet313105573Batutua RoteRoteNanoDropline88106573Oesely RoteRoteNanoDropline11107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
102573TPI Kampung UjungManggarai BaratNanoDropline6074103573PP CikidangPangandaranSmallGillnet850104573PP. CikidangPangandaranNanoGillnet313105573Batutua RoteRoteNanoDropline88106573Oesely RoteRoteNanoDropline11107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
103573PP CikidangPangandaranSmallGillnet850104573PP. CikidangPangandaranNanoGillnet313105573Batutua RoteRoteNanoDropline88106573Oesely RoteRoteNanoDropline11107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
104573PP. CikidangPangandaranNanoGillnet313105573Batutua RoteRoteNanoDropline88106573Oesely RoteRoteNanoDropline11107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
105573Batutua RoteRoteNanoDropline88106573Oesely RoteRoteNanoDropline11107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212				9				
106573Oesely RoteRoteNanoDropline11107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212				_				
107573Papela DaratRoteNanoDropline99108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
108573Papela TanjungRoteNanoDropline99109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
109573RoteRoteNanoDropline47110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212			=					
110573SukabumiSukabumiNanoDropline5050111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212						_		
111573WiniTimor Tengah UtaraNanoDropline712112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
112711PP Baturusa Pangkal BatamBangkaSmallTrap424113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212						Dropline	50	
113711PP. SungailiatBangkaSmallDropline16114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212								
114711PP. SungailiatBangkaSmallGillnet1167115711PP. SungailiatBangkaSmallMixgears212			_	_		_	4	
115 711 PP. Sungailiat Bangka Small Mixgears 2 12						_		
116 711 PP. Sungailiat Bangka Small Trap 1 6						_		
	116	711	PP. Sungailiat	Bangka	Small	Trap	1	6

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
117	711	Batam	Batam	Large	Trap	1	34
118	711	Batam	Batam	Medium	Trap	2	56
119	711	Batam	Batam	Small	Dropline	2	12
120	711	Batam	Batam	Small	Trap	2	13
121	711	PP. Tanjung Pandan	Belitung	Medium	Mixgears	2	36
122	711	PP. Tanjung Pandan	Belitung	Medium	Trap	3	63
123	711	PP. Tanjung Pandan	Belitung	Nano	Dropline	77	157
124	711	PP. Tanjung Pandan	Belitung	Nano	Mixgears	75	225
125	711	PP. Tanjung Pandan	Belitung	Nano	Trap	20	71
126	711	PP. Tanjung Pandan	Belitung	Small	Dropline	5	27
127	711	PP. Tanjung Pandan	Belitung	Small	Gillnet	3	16
128	711	PP. Tanjung Pandan	Belitung	Small	Longline	2	11
129	711	PP. Tanjung Pandan	Belitung	Small	Mixgears	10	65
130	711	PP. Tanjung Pandan	Belitung	Small	Trap	46	248
131	711	PP. Manggar Belitung Timur	Belitung Timur	Medium	Dropline	2	21
132	711	PP. Manggar Belitung Timur	Belitung Timur	Medium	Mixgears	1	20
133	711	PP. Manggar Belitung Timur	Belitung Timur	Nano	Dropline	3	11
134	711	PP. Manggar Belitung Timur	Belitung Timur	Nano	Mixgears	1	4
135	711	PP. Manggar Belitung Timur	Belitung Timur	Small	Dropline	4	22
136	711	PP. Manggar Belitung Timur	Belitung Timur	Small	Mixgears	87	481
137	711	PP. Kijang	Bintan	Large	Longline	2	69
138	711	PP. Kijang	Bintan	Medium	Dropline	3	47
139	711	PP. Kijang	Bintan	Medium	Longline	4	78
140	711	PP. Kijang	Bintan	Medium	Trap	245	4709
141	711	PP. Kijang	Bintan	Nano	Mixgears	2	8
142	711	PP. Kijang	Bintan	Nano	Trap	7	29
143	711	PP. Kijang	Bintan	Small	Dropline	10	66
144	711	PP. Kijang	Bintan	Small	Longline	5	36
145	711	PP. Kijang	Bintan	Small	Mixgears	9	58
146	711	PP. Kijang	Bintan	Small	Trap	210	1425
147	711	Moro	Karimun	Small	Trap	1	7
148	711	Tanjung Balai Karimun	Karimun	Medium	Longline	7	163
149	711	PP. Tarempa	Kepulauan Anambas	Nano	Dropline	202	298
150	711	PP. Tarempa	Kepulauan Anambas	Nano	Trap	19	24
151	711	PP. Tarempa	Kepulauan Anambas	Small	Dropline	11	63
152	711	PPI Ladan	Kepulauan Anambas	Nano	Dropline	73	182
153	711	PPI Ladan	Kepulauan Anambas	Small	Dropline	1	5
154	711	Bunguran	Natuna	Nano	Dropline	22	79
155	711	Dermaga Kayu Sededap	Natuna	Nano	Dropline	1	5
156	711	Lagong	Natuna	Nano	Dropline	23	69
157	711	Natuna	Natuna	Large	Longline	3	94
158	711	Natuna	Natuna	Medium	Longline	1	28
159	711	Pelabuhan Midai	Natuna	Medium	Mixgears	4	48
160	711	Pelabuhan Midai	Natuna	Small	Mixgears	1	6
161	711	Pelabuhan Pasir Putih	Natuna	Nano	Dropline	1	2
162	711	Pelabuhan Pering	Natuna	Medium	Dropline	2	30
163	711	Pelabuhan Pering	Natuna	Nano	Dropline	21	78
164	711	Pelabuhan Pering	Natuna	Small	Dropline	1	8
165	711	Pelabuhan Sabang Barat-Midai	Natuna	Medium	Mixgears	1	12
166	711	Pelabuhan Sabang Barat-Midai	Natuna	Small	Mixgears	2	12
167	711	Pelabuhan Tanjung	Natuna	Nano	Dropline	30	59
168	711	Pering	Natuna	Nano	Dropline	1	4
169	711	PP. Pering	Natuna	Small	Dropline	1	5
170	711	PP. Tarempa	Natuna	Medium	Longline	1	18
171	711	Pulau Tiga Natuna	Natuna	Small	Dropline	28	170
172	711	Sepempang	Natuna	Small	Dropline	22	132
173	711	Subi-besar	Natuna	Nano	Dropline	23	69
174	711	Tanjung Balai Karimun	Natuna	Medium	Longline	57	1579

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
175	711	Teluk Buton	Natuna	Nano	Dropline	26	78
176	711	Pangkal Balam	Pangkal Pinang	Nano	Dropline	2	7
177	711	Pangkal Balam	Pangkal Pinang	Nano	Mixgears	3	12
178	711	Pangkal Balam	Pangkal Pinang	Nano	Trap	1	4
179	711	Pangkal Balam	Pangkal Pinang	Small	Gillnet	1	6
180	711	Pangkal Balam	Pangkal Pinang	Small	Mixgears	5	27
181	711	Pangkal Balam	Pangkal Pinang	Small	Trap	12	67
182	711	PP. Bajomulyo	Pati	Large	Longline	2	125
183	711	PP. Kuala Mempawah	Pontianak	Medium	Trap	2	20
184	711	PP. Kuala Mempawah	Pontianak	Small	Trap	3	19
185	712	PP. Tanjung Pandan	Belitung	Nano	Trap	2	7
186	712	PP. Tanjung Pandan	Belitung	Small	Trap	12	63
187	712	PP. Karangsong	Indramayu	Medium	Longline	11	165
188	712	PP. Karangsong	Indramayu	Small	Longline	1	9
189	712	PP. Cituis	Jakarta	Nano	Mixgears	8	32
190	712	Jepara	Jepara	Medium	Mixgears	4	55
191	712	Jepara	Jepara	Small	Mixgears	1	6
192	712	PP. Karimun Jawa	Jepara	Medium	Mixgears	28	395
193	712	PP. Karimun Jawa	Jepara	Nano	Mixgears	6	21
194	712	PP. Karimun Jawa	Jepara	Small	Mixgears	68	491
195	712	Pulau Parang	Jepara	Medium	Mixgears	5	99
196	712	Pulau Parang	Jepara	Small	Trap	1	7
197	712	PP. Brondong	Lamongan	Medium	Dropline	43	575
198	712	PP. Brondong	Lamongan	Medium	Mixgears	18	314
199	712	PP. Brondong	Lamongan	Nano	Dropline	8	32
200	712	PP. Brondong	Lamongan	Small	Dropline	118	902
201	712	PP. Brondong	Lamongan	Small	Mixgears	2	14
202	712	PP. Paciran	Lamongan	Medium	Dropline	1	16
203	712	PP. Paciran	Lamongan	Medium	Mixgears	22	343
204	712	PP. Bajomulyo	Pati	Large	Longline	42	2117
205	712	PP. Bajomulyo	Pati	Medium	Longline	36	956
206	712	PP. Bajomulyo	Pati	Small	Longline	2	16
207	712	PP. Asem Doyong	Pemalang	Small	Dropline	$\overline{24}$	132
208	712	PP. Mayangan	Probolinggo	Medium	Longline	1	29
209	712	Probolinggo	Probolinggo	Large	Longline	1	85
210	712	Situbondo	Situbondo	Nano	Dropline	20	60
211	712	Situbondo	Situbondo	Nano	Longline	20	60
212	712	Desa Masalima	Sumenep	Small	Dropline	10	68
213	712	Desa Masalima	Sumenep	Small	Mixgears	2	16
214	712	Dungkek	Sumenep	Medium	Dropline	1	12
215	712	Dungkek	Sumenep	Small	Dropline	3	22
216	712	Gili Iyang	Sumenep	Small	Dropline	7	51
217	712	Pagerungan Besar	Sumenep	Nano	Longline	1	4
218	712	Pagerungan Besar	Sumenep	Small	Longline	4	25
219	712	Sumenep	Sumenep	Medium	Dropline	2	28
220	712	Sumenep	Sumenep	Nano	Dropline	1	4
221	712	Sumenep	Sumenep	Nano	Longline	1	3
222	712	Sumenep	Sumenep	Small	Dropline	401	3398
223	712	Sumenep	Sumenep	Small	Longline	49	392
224	712	Pagatan	Tanah Bumbu	Small	Dropline	2	10
$\frac{224}{225}$	713	PP. Filial Klandasan	Balikpapan	Nano	Dropline	2	8
$\frac{225}{226}$	713	PP. Filial Klandasan	Balikpapan Balikpapan	Small	Dropline	23	132
$\frac{220}{227}$	713	PP. Klandasan	Balikpapan Balikpapan	Small	Dropline	3	21
228	713	PP. Manggar Baru	Balikpapan Balikpapan	Medium	Dropline	3 17	303
$\frac{228}{229}$	713	PP. Manggar Baru	Balikpapan Balikpapan	Small	Longline		
$\frac{229}{230}$	713	PP. Tanjung Pandan	Belitung	Nano	Trap	8 1	$\frac{44}{3}$
$\frac{230}{231}$	713	PP. Tanjung Pandan PP. Tanjung Pandan	Belitung	Small	Dropline		5 5
$\frac{231}{232}$	713	PP. Tanjung Pandan PP. Tanjung Pandan	Belitung	Small	Trap	$\frac{1}{4}$	3 21
202	110	rr. ranjung ranuan	Dentung	oman	тар	4	41

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
233	713	Lok Tuan	Bontang	Nano	Dropline	1	1
234	713	Lok Tuan	Bontang	Nano	Mixgears	3	12
235	713	PP. Tanjung Limau	Bontang	Nano	Dropline	5	11
236	713	PP. Tanjung Limau	Bontang	Small	Dropline	4	24
237	713	Tanjung Laut	Bontang	Nano	Dropline	1	1
238	713	Dannuang	Bulukumba	Nano	Mixgears	20	20
239	713	Kalumeme	Bulukumba	Nano	Mixgears	20	20
240	713	Kota Bulukumba	Bulukumba	Nano	Mixgears	300	300
241	713	Para-para	Bulukumba	Small	Dropline	20	120
242	713	PP. Soro Kempo	Dompu	Nano	Longline	300	300
243	713	PP. Labean	Donggala	Nano	Dropline	27	24
244	713	Anawoi	Kolaka	Medium	Trap	5	64
245	713	Gang Kakap, Muara Jawa	Kutai Kartanegara	Nano	Longline	20	60
246	713	Kampung Terusan	Kutai Kartanegara	Small	Longline	10	85
247	713	Kuala Samboja	Kutai Kartanegara	Small	Longline	3	15
248	713	Pantai Biru Kersik	Kutai Kartanegara	Nano	Dropline	16	48
249	713	Semangkok	Kutai Kartanegara	Nano	Dropline	10	31
250	713	Gang Mulia, Kampung Kajang	Kutai Timur	Small	Dropline	1	5
251	713	Maloy	Kutai Timur	Small	Dropline	1	5
252	713	Muara Selangkau	Kutai Timur	Nano	Dropline	40	120
253	713	Majene	Majene	Nano	Mixgears	52	156
254	713	Majene	Majene	Small	Dropline	1	7
255	713	Majene	Majene	Small	Longline	12	84
256	713	Mamuju	Mamuju	Nano	Dropline	31	93
257	713	Mamuju	Mamuju	Small	Dropline	4	20
258	713	PP. Labuhan Bajo	Manggarai Barat	Nano	Dropline	40	15
259	713	PP. Konge	Nagekeo	Nano	Dropline	50	16
260	713	Muara Pasir	Paser	Nano	Longline	10	20
261	713	PP. Bajomulyo	Pati	Large	Longline	3	130
262	713	Kampung Pejala	Penajam Paser Utara	Small	Mixgears	17	85
263	713	Logpond CV. Alas	Penajam Paser Utara	Nano	Dropline	26	78
264	713	Logpond CV. Alas	Penajam Paser Utara	Small	Dropline	4	20
265	713	Logpond SDR	Penajam Paser Utara	Nano	Dropline	14	42
266	713	Muara Tunan	Penajam Paser Utara	Nano	Dropline	40	120
267	713	Nenang	Penajam Paser Utara	Small	Trap	50	253
268	713	PP. Mayangan	Probolinggo	Medium	Longline	1	27
269	713	PP. Kenyamukan	Sangatta	Medium	Dropline	3	32
270	713	PP. Kenyamukan	Sangatta	Nano	Dropline	40	40
271	713	PP. Kenyamukan	Sangatta	Small	Dropline	11	75
272	713	PP. Sangatta	Sangatta	Medium	Dropline	1	10
273	713	PP. Sangatta	Sangatta	Small	Dropline	5	31
274	713	Labuan Sangoro	Sumbawa	Nano	Longline	20	37
275	713	Labuan Sumbawa	Sumbawa	Large	Dropline	1	34
276	713	Labuan Terata	Sumbawa	Nano	Dropline	4	7
277	713	Labuhan Sumbawa	Sumbawa	Medium	Dropline	1	12
278	713	Labuhan Sumbawa	Sumbawa	Small	Dropline	7	36
279	713	Sumbawa	Sumbawa	Nano	Longline	50	50
280	713	PP. Beba	Takalar	Medium	Dropline	26	362
281	713	PP. Beba	Takalar	Medium	Gillnet	14	215
282	713	PP. Beba	Takalar	Medium	Longline	82	1003
283	713	PP. Beba	Takalar	Nano	Longline	1	3
284	713	PP. Paotere	Takalar	Medium	Dropline	1	12
285	713	PP. Paotere	Takalar	Small	Dropline	1	8
286	713	PP. Paotere	Takalar	Small	Longline	3	24
287	714	Kabola	Alor	Nano	Dropline	15	10
288	714	Kokar	Alor	Nano	Dropline	100	88
289	714	Banggai Kepulauan	Banggai Kepulauan	Nano	Dropline	10	10
290	714	Banggai Laut	Banggai Laut	Nano	Dropline	50	50

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
291	714	Bontosi	Banggai Laut	Nano	Dropline	2	5
292	714	Kasuari	Banggai Laut	Nano	Longline	18	21
293	714	Matanga	Banggai Laut	Nano	Longline	5	4
294	714	Sonit	Banggai Laut	Nano	Longline	3	9
295	714	Tinakin	Banggai Laut	Nano	Dropline	1	1
296	714	PP. Tanjung Pandan	Belitung	Small	Dropline	1	6
297	714	PPI Soropia	Konawe	Medium	Trap	1	12
298	714	PPI Soropia	Konawe	Nano	Trap	2	1
299	714	Labengki	Konawe Utara	Nano	Dropline	4	5
300	714	Labengki	Konawe Utara	Nano	Longline	1	1
301	714	Labengki	Konawe Utara	Nano	Mixgears	5	5
302	714	Batu Lubang	Kota Ambon	Nano	Dropline	30	53
303	714	Asilulu	Maluku Tengah	Nano	Dropline	30	56
304	714	PP. Tulehu	Maluku Tengah	Large	Dropline	1	34
305	714	Kampung Barbar	Maluku Tenggara Barat	Nano	Dropline	6	12
306	714	Pasar Baru Omele Saumlaki	Maluku Tenggara Barat	Nano	Dropline	6	13
307	714	Pasar Baru Omele Saumlaki	Maluku Tenggara Barat	Nano	Longline	1	3
308	714	Pasar Lama Saumlaki	Maluku Tenggara Barat	Nano	Dropline	1	2
309	714	Saumlaki	Maluku Tenggara Barat	Nano	Dropline	3	8
310	714	PP. Kema	Minahasa Utara	Large	Dropline	1	30
311	714	Desa Bahonsuai	Morowali	Nano	Dropline	2	2
312	714	Desa Umbele	Morowali	Nano	Dropline	2	2
313	714	Desa Umbele	Morowali	Nano	Longline	1	1
314	714	Limbo	Pulau Taliabu	Nano	Mixgears	30	18
315	714	Dusun Anauni	Seram Bagian Barat	Nano	Dropline	15	15
316	714	Dusun Anauni	Seram Bagian Barat	Nano	Longline	35	44
317	714	Dusun Huaroa	Seram Bagian Barat	Nano	Dropline	50	74
318	714	Dusun Huhua	Seram Bagian Barat	Nano	Mixgears	20	27
319	714	Dusun Naeselan	Seram Bagian Barat	Nano	Mixgears	20	33
320	714	Dusun Pattinea	Seram Bagian Barat	Nano	Mixgears	50	67
321	714	Dusun Pohon Batu	Seram Bagian Barat	Nano	Dropline	30	43
322	714	Dusun Waisela	Seram Bagian Barat	Nano	Dropline	5	7
323	714	Dusun Waisela	Seram Bagian Barat	Nano	Longline	10	14
324	714	Dusun Wayohong	Seram Bagian Barat	Nano	Dropline	10	12
325	714	Langgur Tual	Tual	Medium	Longline	1	15
326	714	Langgur Tual	Tual	Small	Longline	2	13
327	714	Mangon Tual	Tual	Small	Dropline	1	7
328	714	PP. Tual	Tual	Large	Dropline	1	36
329	714	PP. Tual	Tual	Medium	Dropline	2	47
330	714	PP. Tual	Tual	Medium	Longline	3	62
331	714	PP. Tual	Tual	Nano	Dropline	1	2
332	714	PP. Tual	Tual	Nano	Longline	1	4
333	714	PP. Tual	Tual	Small	Dropline	2	13
334	714	PP. Tual	Tual	Small	Longline	3	18
335	714	Watdek	Tual	Small	Mixgears	5	32
336	714	Binongko	Wakatobi	Medium	Dropline	1	13
337	714	Binongko	Wakatobi	Nano	Dropline	28	16
338	714	Dermaga Desa Wali	Wakatobi	Small	Dropline	1	5
339	714	Desa Lagongga	Wakatobi	Nano	Dropline	7	26
340	714	Desa Lagongga	Wakatobi	Small	Dropline	1	6
341	714	Desa Wali	Wakatobi	Nano	Dropline	2	8
342	714	Pelabuhan Lagelewa	Wakatobi	Nano	Dropline	1	3
343	715	Pagimana	Banggai	Nano	Dropline	3	4
344	715	Pagimana	Banggai	Nano	Mixgears	60	48
345	715	Pangkalaseang	Banggai	Nano	Dropline	10	10
346	715	Kampung Sekar	Fakfak	Nano	Dropline	7	7
340 347	715	Kampung Sosar, Kokas	Fakfak	Nano	Dropline	7	7
348	715	Kampung Ugar	Fakfak	Nano	Dropline	17	11
940	110	rampung Ogai	ranian	rano	оторине	Τ (11

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

149 1715 Pasar Sorpeha Fakfak Nano Dropline 7 17 206	Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
1515 P.P. Fakfak Fakfak Medium Longline 3 46 152 Ti5 P.P. Fakfak Fakfak Small Longline 3 19 153 Ti5 Bacan Halmahera Selatan Nano Dropline 30 18 154 Ti5 Bacan Halmahera Selatan Nano Dropline 6 2 155 Ti5 Bacan Barat Halmahera Selatan Nano Dropline 6 2 156 Ti5 Bacan Engah Halmahera Selatan Nano Dropline 6 2 157 Ti5 Bacan Tengah Halmahera Selatan Nano Dropline 6 2 158 Ti5 Bacan Utara Halmahera Selatan Nano Dropline 5 2 158 Ti5 Bacan Utara Halmahera Selatan Nano Dropline 5 2 159 Ti5 Cane Barat Halmahera Selatan Nano Dropline 5 2 150 Ti5 Gane Timur Selatan Halmahera Selatan Nano Dropline 15 5 150 Ti5 Gane Barat Halmahera Selatan Nano Dropline 16 13 150 Ti5 Gane Timur Selatan Halmahera Selatan Nano Dropline 16 13 150 Ti5 Gane Timur Selatan Halmahera Selatan Nano Dropline 17 2 150 Ti5 Mandioli Selatan Halmahera Selatan Nano Dropline 17 2 151 Mandioli Selatan Halmahera Selatan Nano Dropline 17 5 152 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 17 5 153 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 10 3 151 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 10 3 151 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 10 3 152 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 10 3 153 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 10 3 151 Staimana Kaimana Large Longline 6 10 152 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 10 3 153 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 10 3 151 Staimana Kaimana Large Longline 6 10 152 Ti5 Pulau Obitat Halmahera Selatan Nano Dropline 10 3 153 Ti5 Pulau Parang Seram Bagian Timur Nano Dropline 6 10 153 Ti5 Pulau Parang Seram Bagian T	349	715	Pasar Sorpeha	Fakfak	Nano	Dropline	7	17
P. Fafafak Fafafak Fafafak Small Longline 2 19	350	715	PP. Dulan Pokpok	Fakfak	Nano	Dropline	215	206
153	351	715	PP. Fakfak	Fakfak	Medium	Longline	3	46
155	352	715	PP. Fakfak	Fakfak	Small	Longline	2	19
155	353	715	Bacan	Halmahera Selatan	Nano	Dropline	39	18
356 715 Bacan Tengah Hahmahera Selatan Nano Dropline 35 11 357 715 Bacan Utara Hahmahera Selatan Nano Dropline 5 2 358 715 Bacan Utara Halmahera Selatan Nano Dropline 5 2 360 715 Gane Barat Halmahera Selatan Nano Dropline 40 15 361 715 Gane Burat Halmahera Selatan Nano Dropline 40 13 362 715 Kep Batang Lomang Halmahera Selatan Nano Dropline 7 2 4 363 715 Kepulauan Joronga Halmahera Selatan Nano Dropline 17 4 4 365 715 Mandioli Utara Halmahera Selatan Nano Dropline 17 4 4 368 715 Pulau Obi Halmahera Selatan Nano Dropline 13 4 4 4 4 4	354	715	Bacan	Halmahera Selatan	Nano	Mixgears	1	0
157 1715 Bacan Utura	355	715	Bacan Barat	Halmahera Selatan	Nano	Dropline	6	2
158	356	715	Bacan Tengah		Nano	Dropline	35	11
359 715 Dess Lalei Halmahera Selatan Nano Dropline 29 17 360 715 Gane Barat Halmahera Selatan Nano Dropline 10 13 362 715 Kep. Batang Lomang Halmahera Selatan Nano Dropline 7 2 364 715 Mandioli Selatan Halmahera Selatan Nano Dropline 13 4 365 715 Mandioli Utara Halmahera Selatan Nano Dropline 17 5 366 715 Puau Obilatu Halmahera Selatan Nano Dropline 17 5 367 715 Pulau Obi Halmahera Selatan Nano Dropline 13 4 368 715 Pulau Obi Halmahera Timur Nano Dropline 17 7 7 369 715 Kaimana Kaimana Kaimana Nano Dropline 8 78 370 715 Kaimana Kaimana </td <td>357</td> <td></td> <td>Bacan Timur</td> <td>Halmahera Selatan</td> <td>Nano</td> <td>Dropline</td> <td>4</td> <td>1</td>	357		Bacan Timur	Halmahera Selatan	Nano	Dropline	4	1
360 715 Gane Barat Halmahera Selatan Nano Dropline 40 13 361 715 Kep. Batang Lomang Halmahera Selatan Nano Dropline 12 4 363 715 Kep. Batang Lomang Halmahera Selatan Nano Dropline 7 2 364 715 Mandioli Selatan Halmahera Selatan Nano Dropline 13 4 365 715 Mandioli Utara Halmahera Selatan Nano Dropline 10 3 367 715 Pulau Obi Halmahera Selatan Nano Dropline 17 7 368 715 Buli Halmahera Timur Nano Dropline 27 7 368 715 Balmahera Timur Nano Dropline 48 78 370 715 Kaimana Kaimana Large Dropline 2 61 371 715 PU. Kaimana Kaimana Large Longthee 6 </td <td>358</td> <td></td> <td>Bacan Utara</td> <td>Halmahera Selatan</td> <td>Nano</td> <td>Dropline</td> <td>5</td> <td>2</td>	358		Bacan Utara	Halmahera Selatan	Nano	Dropline	5	2
361 715 Gane Timur Selatan Halmahera Selatan Nano Dropline 40 13 362 715 Kep. Batang Lomang Halmahera Selatan Nano Dropline 7 2 364 715 Mandioli Selatan Halmahera Selatan Nano Dropline 1 2 366 715 Mandioli Utara Halmahera Selatan Nano Dropline 10 3 367 715 Pulau Obilatu Halmahera Selatan Nano Dropline 10 3 368 715 Pulau Obi Halmahera Timur Nano Dropline 13 44 368 715 Buli Halmahera Timur Nano Dropline 48 78 369 715 Bula Obi Halmahera Timur Nano Dropline 48 78 369 715 Bula Mana Kaimana Large Longline 6 101 377 715 PU. Kaimana Kaimana Large <t< td=""><td>359</td><td></td><td>Desa Lalei</td><td>Halmahera Selatan</td><td>Nano</td><td>Dropline</td><td>29</td><td>17</td></t<>	359		Desa Lalei	Halmahera Selatan	Nano	Dropline	29	17
362 715 Kep, Batang Lomang Halmahera Selatan Nano Dropline 12 4 363 715 Mandioli Selatan Halmahera Selatan Nano Dropline 13 4 365 715 Mandioli Utara Halmahera Selatan Nano Dropline 17 5 366 715 Pulau Obi Halmahera Selatan Nano Dropline 13 44 368 715 Pulau Obi Halmahera Timur Nano Dropline 13 44 368 715 Buli Halmahera Timur Nano Dropline 13 7 44 369 715 Kaimana Kaimana Nano Dropline 48 78 370 715 Kaimana Kaimana Nano Dropline 8 38 371 715 P.K. Kema Minahasa Utara Medium Longline 6 101 372 715 Desa Sear, Bula Seram Bagian Timur Nano	360	715	Gane Barat	Halmahera Selatan	Nano			5
363 715 Kepulanan Joronga Halmahera Selatan Nano Dropline 7 2 364 715 Mandioli Selatan Halmahera Selatan Nano Dropline 17 5 366 715 Puau Obilatu Halmahera Selatan Nano Dropline 10 3 367 715 Pulau Obi Halmahera Selatan Nano Dropline 13 4 368 715 Pulau Obi Halmahera Timur Nano Dropline 18 4 368 715 Buli Halmahera Timur Nano Dropline 48 78 367 715 Kaimana Kaimana Dropline 48 78 371 715 Kaimana Kaimana Large Longline 2 61 372 715 Pu. Kaimana Kaimana Large Dropline 8 339 372 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 10			Gane Timur Selatan	Halmahera Selatan	Nano	Dropline	40	13
364 715 Mandioli Selatan Halmahera Selatan Nano Dropline 13 4 365 715 Mandioli Utara Halmahera Selatan Nano Dropline 10 3 367 715 Pulau Obi Halmahera Fimur Nano Dropline 13 44 367 715 Bulu Obi Halmahera Fimur Nano Dropline 7 7 369 715 Halmahera Timur Halmahera Timur Nano Dropline 53 53 370 715 Kaimana Kaimana Large Longline 6 61 372 715 PU. Kaimana Kaimana Medium Longline 6 101 372 715 PP. Kema Minahasa Utara Medium Dropline 8 339 374 715 PP. Kema Minahasa Utara Medium Dropline 10 3 375 715 Desa Sears, Bula Seram Bagian Timur Nano Dropli	362	715	Kep. Batang Lomang	Halmahera Selatan	Nano	Dropline	12	4
Separation	363		Kepulauan Joronga	Halmahera Selatan	Nano	Dropline		2
366 715 Puan Obilatu Halmahera Selatan Nano Dropline 10 3 367 715 Pulau Obi Halmahera Selatan Nano Dropline 7 7 368 715 Buli Halmahera Timur Nano Dropline 7 7 369 715 Halmahera Timur Nano Dropline 48 78 370 715 Kaimana Kaimana Nano Dropline 53 53 371 715 PU. Kaimana Kaimana Large Longline 6 101 372 715 PU. Kaimana Kaimana Large Longline 6 101 372 715 PP. Kema Minahasa Utara Large Dropline 6 101 373 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 10 20 377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 <td>364</td> <td>715</td> <td>Mandioli Selatan</td> <td>Halmahera Selatan</td> <td>Nano</td> <td></td> <td>13</td> <td>4</td>	364	715	Mandioli Selatan	Halmahera Selatan	Nano		13	4
367 715 Pulau Obi Halmahera Selatan Nano Dropline 7 7 368 715 Buli Halmahera Timur Nano Dropline 7 7 369 715 Halmahera Timur Nano Dropline 48 78 370 715 Kaimana Kaimana Nano Dropline 53 53 371 715 PU. Kaimana Kaimana Large Longline 6 101 372 715 PV. Kaimana Minahasa Utara Large Dropline 8 339 373 715 PP. Kema Minahasa Utara Medium Dropline 8 339 375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 10 20 376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Sofifi Sofifi Nano Dropline 50 92 <td>365</td> <td>715</td> <td>Mandioli Utara</td> <td></td> <td>Nano</td> <td>Dropline</td> <td>17</td> <td>5</td>	365	715	Mandioli Utara		Nano	Dropline	17	5
368 715 Buli Halmahera Timur Nano Dropline 7 7 369 715 Halmahera Timur Nano Dropline 48 78 370 715 Kaimana Kaimana Nano Dropline 2 61 371 715 PU. Kaimana Kaimana Medium Longline 6 101 372 715 PP. Kema Minahasa Utara Large Dropline 8 339 374 715 PP. Kema Minahasa Utara Large Dropline 12 349 375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 10 20 376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 378 715 Senabatan Puri Sorong Sorong Medium Dropline 50	366	715	Puau Obilatu	Halmahera Selatan	Nano	Dropline	10	3
369 715 Halmahera Timur Halmahera Timur Nano Dropline 48 78 370 715 Kaimana Kaimana Nano Dropline 53 53 371 715 PU. Kaimana Kaimana Large Longline 2 61 372 715 PP. Kema Minahasa Utara Large Dropline 8 339 374 715 PP. Kema Minahasa Utara Medium Dropline 12 349 375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 10 20 376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 378 715 Soffi Soffi Nano Dropline 50 92 378 715 Soffi Soffi Nano Dropline 10	367	715	Pulau Obi	Halmahera Selatan	Nano	Dropline	137	44
370 715 Kaimana Kaimana Nano Dropline 53 53 371 715 PU. Kaimana Kaimana Large Longline 2 61 372 715 PV. Kaimana Kaimana Medium Longline 6 101 373 715 PP. Kema Minahasa Utara Medium Dropline 8 339 374 715 PP. Kema Minahasa Utara Medium Dropline 12 349 375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 10 20 376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 379 715 Sofifi Sofifi Nano Dropline 50 90 380 715 Jembatan Puri Sorong Sorong Medium Dropline	368	715	Buli	Halmahera Timur	Nano	Dropline	7	7
371 715 PU. Kaimana Kaimana Large Longline 2 61 372 715 PU. Kaimana Kaimana Medium Longline 6 101 373 715 PP. Kema Minahasa Utara Medium Dropline 12 349 375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 10 20 376 715 Desa Saer, Bula Seram Bagian Timur Nano Dropline 50 90 376 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 378 715 Pulau Parang Seram Bagian Timur Nano Dropline 50 90 378 715 Sofifi Sofifi Nano Dropline 50 92 381 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 P. Sorong Sorong Medium Miscears </td <td>369</td> <td>715</td> <td>Halmahera Timur</td> <td>Halmahera Timur</td> <td>Nano</td> <td>Dropline</td> <td>48</td> <td>78</td>	369	715	Halmahera Timur	Halmahera Timur	Nano	Dropline	48	78
372 715 PU. Kaimana Kaimana Medium Longline 6 101 373 715 PP. Kema Minahasa Utara Large Dropline 8 339 374 715 PP. Kema Minahasa Utara Medium Dropline 12 349 375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 50 50 376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Desa Maru Seram Bagian Timur Nano Dropline 50 92 379 715 Sofifi Sofifi Nano Dropline 50 92 379 715 Jembatan Puri Sorong Sorong Medium Dropline 8 145 381 715 P.P. Sorong Sorong Medium <	370	715	Kaimana	Kaimana	Nano	Dropline	53	53
373 715 PP. Kema Minahasa Utara Large Dropline 8 339 374 715 PP. Kema Minahasa Utara Medium Dropline 12 349 375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 30 50 376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 378 715 Pulau Parang Seram Bagian Timur Nano Dropline 50 92 379 715 Sofifi Sofifi Nano Dropline 50 92 379 T15 Penbatan Puri Sorong Sorong Medium Dropline 5 94 381 715 Jembatan Puri Sorong Sorong Medium Dropline 8 145 382 715 PP. Sorong Sorong Medium	371	715	PU. Kaimana	Kaimana	Large	Longline	2	61
374 715 PP. Kema Minahasa Utara Medium Dropline 12 349 375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 10 20 376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 378 715 Pulau Parang Seram Bagian Timur Nano Dropline 50 92 379 715 Sofifi Sofifi Nano Dropline 50 92 380 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 Jembatan Puri Sorong Sorong Medium Dropline 8 145 382 715 P.P. Sorong Sorong Medium Dropline 1 17 384 715 P.P. Sorong Sorong Nano D	372	715	PU. Kaimana	Kaimana	Medium	Longline	6	101
375 715 Desa Pantai Pos, Bula Seram Bagian Timur Nano Dropline 30 50 376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 90 377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 379 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 50 92 379 715 Posofif Sofif Nano Dropline 10 10 380 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 Jembatan Puri Sorong Sorong Medium Dropline 8 145 382 715 PP. Sorong Sorong Medium Dropline 8 145 383 715 PP. Sorong Sorong Medium Dropline 1 1 384 715 PP. Sorong Sorong Nano Droplin	373	715	PP. Kema	Minahasa Utara	Large	Dropline	8	339
376 715 Desa Sesar, Bula Seram Bagian Timur Nano Dropline 10 20 377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 378 715 Pulau Parang Seram Bagian Timur Nano Dropline 50 92 379 715 Sofifi Sofifi Nano Dropline 50 92 380 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 PP. Sorong Sorong Medium Dropline 8 145 382 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Nano Dropline 7 22 386 715 PP. Sorong Sorong Small Dropline 4	374	715	PP. Kema	Minahasa Utara	Medium	Dropline	12	349
377 715 Desa Waru Seram Bagian Timur Nano Dropline 50 90 378 715 Pulau Parang Seram Bagian Timur Nano Dropline 50 92 379 715 Sofifi Sofifi Nano Dropline 50 92 380 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 Jembatan Puri Sorong Sorong Medium Dropline 8 145 382 715 PP. Sorong Sorong Medium Dropline 8 145 383 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Mano Mixgears 2 6 387 715 PP. Sorong Sorong Small Dropline 4 26	375	715	Desa Pantai Pos, Bula	Seram Bagian Timur	Nano	Dropline	30	50
378 715 Pulau Parang Seram Bagian Timur Nano Dropline 50 92 379 715 Sofifi Nano Dropline 10 10 380 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 Jembatan Puri Sorong Sorong Medium Mixgears 2 26 382 715 PP. Sorong Sorong Medium Dropline 1 17 384 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Nano Dropline 7 22 386 715 PP. Sorong Sorong Nano Dropline 7 22 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Trap 2 18 389	376	715	Desa Sesar, Bula	Seram Bagian Timur	Nano	Dropline	10	20
379 715 Sofifi Sofifi Nano Dropline 10 10 380 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 Jembatan Puri Sorong Sorong Medium Dropline 8 145 382 715 PP. Sorong Sorong Medium Dropline 1 17 384 715 PP. Sorong Sorong Medium Longline 1 17 384 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Nano Dropline 7 22 386 715 PP. Sorong Sorong Small Dropline 4 26 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Trap 2 18 <td< td=""><td>377</td><td>715</td><td>Desa Waru</td><td></td><td>Nano</td><td>Dropline</td><td>50</td><td>90</td></td<>	377	715	Desa Waru		Nano	Dropline	50	90
380 715 Jembatan Puri Sorong Sorong Medium Dropline 5 94 381 715 Jembatan Puri Sorong Sorong Medium Mixgears 2 26 382 715 PP. Sorong Sorong Medium Dropline 8 145 383 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Mano Dropline 7 22 386 715 PP. Sorong Sorong Nano Mixgears 2 6 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Trap 2 18 389 716 Biduk-biduk Berau Medium Dropline 1 22 <	378	715	Pulau Parang	Seram Bagian Timur	Nano	Dropline	50	92
381 715 Jembatan Puri Sorong Sorong Medium Mixgears 2 26 382 715 PP. Sorong Sorong Medium Dropline 8 145 383 715 PP. Sorong Sorong Medium Longline 1 17 384 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Nano Dropline 7 22 386 715 PP. Sorong Sorong Small Dropline 4 26 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Dropline 1 62 389 716 Biduk-biduk Berau Mano Dropline 1 22 391	379	715	Sofifi	Sofifi	Nano	Dropline	10	10
382 715 PP. Sorong Sorong Medium Dropline 8 145 383 715 PP. Sorong Sorong Medium Longline 1 17 384 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Nano Dropline 7 22 386 715 PP. Sorong Sorong Nano Mixgears 2 6 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Trap 2 18 389 715 Bajugan Tolitoli Nano Dropline 10 6 390 716 Biduk-biduk Berau Medium Dropline 1 22 391 716 Biduk-biduk Berau Nano Dropline 2 69 392	380	715	Jembatan Puri Sorong	Sorong	Medium	Dropline	5	94
383 715 PP. Sorong Sorong Medium Longline 1 17 384 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Nano Dropline 7 22 386 715 PP. Sorong Sorong Small Dropline 4 26 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Dropline 4 26 389 715 Bajugan Tolitoli Nano Dropline 10 6 390 716 Biduk-biduk Berau Medium Dropline 1 22 391 716 Biduk-biduk Berau Nano Dropline 23 69 392 716 Desa Tanjung Batu Berau Nano Dropline 67 201 393	381	715	Jembatan Puri Sorong	Sorong	Medium	Mixgears	2	26
384 715 PP. Sorong Sorong Medium Trap 9 136 385 715 PP. Sorong Sorong Nano Dropline 7 22 386 715 PP. Sorong Sorong Small Dropline 4 26 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Dropline 4 26 389 715 Bajugan Tolitoli Nano Dropline 10 6 390 716 Biduk-biduk Berau Medium Dropline 1 22 391 716 Biduk-biduk Berau Nano Dropline 23 69 392 716 Desa Tanjung Batu Berau Nano Dropline 67 201 393 716 Desa Tanjung Batu Berau Nano Dropline 1 3 394 <td>382</td> <td>715</td> <td>PP. Sorong</td> <td>Sorong</td> <td>Medium</td> <td>Dropline</td> <td>8</td> <td>145</td>	382	715	PP. Sorong	Sorong	Medium	Dropline	8	145
385 715 PP. Sorong Sorong Nano Dropline 7 22 386 715 PP. Sorong Sorong Nano Mixgears 2 6 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Trap 2 18 389 715 Bajugan Tolitoli Nano Dropline 10 6 390 716 Biduk-biduk Berau Medium Dropline 1 22 391 716 Biduk-biduk Berau Nano Dropline 23 69 392 716 Desa Tanjung Batu Berau Nano Dropline 67 201 393 716 Desa Tanjung Batu Berau Nano Dropline 1 3 394 716 Giring-giring Berau Nano Dropline 1 3 396	383	715		Sorong	Medium	Longline	1	17
386 715 PP. Sorong Sorong Nano Misgears 2 6 387 715 PP. Sorong Sorong Small Dropline 4 26 388 715 PP. Sorong Sorong Small Trap 2 18 389 715 Bajugan Tolitoli Nano Dropline 10 6 390 716 Biduk-biduk Berau Medium Dropline 1 22 391 716 Biduk-biduk Berau Nano Dropline 2 69 392 716 Desa Tanjung Batu Berau Nano Dropline 67 201 393 716 Desa Tanjung Batu Berau Nano Dropline 67 201 394 716 Giring-giring Berau Nano Dropline 1 3 395 716 Labuan Cermin Berau Nano Dropline 10 16 397 </td <td>384</td> <td>715</td> <td>PP. Sorong</td> <td>Sorong</td> <td>Medium</td> <td>Trap</td> <td>9</td> <td>136</td>	384	715	PP. Sorong	Sorong	Medium	Trap	9	136
387715PP. SorongSorongSmallDropline426388715PP. SorongSorongSmallTrap218389715BajuganTolitoliNanoDropline106390716Biduk-bidukBerauMediumDropline122391716Biduk-bidukBerauNanoDropline2369392716Desa Tanjung BatuBerauNanoDropline67201393716Desa Tanjung BatuBerauNanoDropline67201394716Giring-giringBerauNanoDropline2266395716Labuan CerminBerauNanoDropline13396716Logpond, Batu PutihBerauNanoDropline1016397716P. DerawanBerauNanoDropline2060399716Pantai HarapanBerauNanoDropline2060399716Pulau Balikukup, Batu PutihBerauNanoTrap618400716Tanjung BatuBerauNanoTrap18401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoMixgears11 <t< td=""><td>385</td><td>715</td><td>PP. Sorong</td><td>Sorong</td><td>Nano</td><td>Dropline</td><td>7</td><td>22</td></t<>	385	715	PP. Sorong	Sorong	Nano	Dropline	7	22
388715PP. SorongSorongSmallTrap218389715BajuganTolitoliNanoDropline106390716Biduk-bidukBerauMediumDropline122391716Biduk-bidukBerauNanoDropline2369392716Desa Tanjung BatuBerauNanoDropline67201393716Desa Tanjung BatuBerauNanoDropline67201394716Giring-giringBerauNanoDropline2266395716Labuan CerminBerauNanoDropline13396716Logpond, Batu PutihBerauNanoDropline1016397716P. DerawanBerauNanoTrap47398716Pantai HarapanBerauNanoDropline2060399716Pulau Balikukup, Batu PutihBerauNanoLongline520400716Tanjung BatuBerauNanoTrap18401716Tanjung PerepatBerauSmallTrap18403716Teluk SulaimanBerauNanoDropline513404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNano <td< td=""><td>386</td><td>715</td><td>PP. Sorong</td><td>Sorong</td><td>Nano</td><td>Mixgears</td><td>2</td><td>6</td></td<>	386	715	PP. Sorong	Sorong	Nano	Mixgears	2	6
389715BajuganTolitoliNanoDropline106390716Biduk-bidukBerauMediumDropline122391716Biduk-bidukBerauNanoDropline2369392716Desa Tanjung BatuBerauNanoDropline67201393716Desa Tanjung BatuBerauNanoTrap13394716Giring-giringBerauNanoDropline2266395716Labuan CerminBerauNanoDropline13396716Logpond, Batu PutihBerauNanoDropline1016397716P. DerawanBerauNanoTrap47398716Pantai HarapanBerauNanoDropline2060399716Pulau Balikukup, Batu PutihBerauNanoLongline520400716Tanjung BatuBerauNanoTrap618401716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline513404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115	387	715	PP. Sorong	Sorong	Small	Dropline	4	26
390 716 Biduk-biduk Berau Medium Dropline 1 22 391 716 Biduk-biduk Berau Nano Dropline 23 69 392 716 Desa Tanjung Batu Berau Nano Dropline 67 201 393 716 Desa Tanjung Batu Berau Nano Dropline 1 3 394 716 Giring-giring Berau Nano Dropline 22 66 395 716 Labuan Cermin Berau Nano Dropline 1 3 396 716 Logpond, Batu Putih Berau Nano Dropline 10 16 397 716 P. Derawan Berau Nano Trap 4 7 398 716 Pantai Harapan Berau Nano Dropline 20 60 399 716 Pulau Balikukup, Batu Putih Berau Nano Trap 6 18 <	388	715	PP. Sorong	Sorong	Small	Trap	2	18
391716Biduk-bidukBerauNanoDropline2369392716Desa Tanjung BatuBerauNanoDropline67201393716Desa Tanjung BatuBerauNanoTrap13394716Giring-giringBerauNanoDropline2266395716Labuan CerminBerauNanoDropline13396716Logpond, Batu PutihBerauNanoDropline1016397716P. DerawanBerauNanoTrap47398716Pantai HarapanBerauNanoDropline2060399716Pulau Balikukup, Batu PutihBerauNanoLongline520400716Tanjung BatuBerauNanoTrap618401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115	389	715	Bajugan	Tolitoli	Nano	Dropline	10	6
392716Desa Tanjung BatuBerauNanoDropline67201393716Desa Tanjung BatuBerauNanoTrap13394716Giring-giringBerauNanoDropline2266395716Labuan CerminBerauNanoDropline13396716Logpond, Batu PutihBerauNanoDropline1016397716P. DerawanBerauNanoTrap47398716Pantai HarapanBerauNanoDropline2060399716Pulau Balikukup, Batu PutihBerauNanoLongline520400716Tanjung BatuBerauNanoTrap618401716Tanjung PerepatBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115	390	716	Biduk-biduk	Berau	Medium	Dropline	1	22
393 716 Desa Tanjung Batu Berau Nano Trap 1 3 394 716 Giring-giring Berau Nano Dropline 22 66 395 716 Labuan Cermin Berau Nano Dropline 1 3 396 716 Logpond, Batu Putih Berau Nano Dropline 10 16 397 716 P. Derawan Berau Nano Trap 4 7 398 716 Pantai Harapan Berau Nano Dropline 20 60 399 716 Pulau Balikukup, Batu Putih Berau Nano Longline 5 20 400 716 Tanjung Batu Berau Nano Trap 6 18 401 716 Tanjung Batu Berau Small Trap 1 8 402 716 Tanjung Perepat Berau Nano Dropline 5 13 <	391	716	Biduk-biduk	Berau	Nano	Dropline	23	69
394 716 Giring-giring Berau Nano Dropline 22 66 395 716 Labuan Cermin Berau Nano Dropline 1 3 396 716 Logpond, Batu Putih Berau Nano Dropline 10 16 397 716 P. Derawan Berau Nano Trap 4 7 398 716 Pantai Harapan Berau Nano Dropline 20 60 399 716 Pulau Balikukup, Batu Putih Berau Nano Longline 5 20 400 716 Tanjung Batu Berau Nano Trap 6 18 401 716 Tanjung Batu Berau Small Trap 1 8 402 716 Tanjung Perepat Berau Nano Dropline 5 13 403 716 Teluk Sulaiman Berau Nano Dropline 29 87	392	716	Desa Tanjung Batu	Berau	Nano	Dropline	67	201
395 716 Labuan Cermin Berau Nano Dropline 1 3 396 716 Logpond, Batu Putih Berau Nano Dropline 10 16 397 716 P. Derawan Berau Nano Trap 4 7 398 716 Pantai Harapan Berau Nano Dropline 20 60 399 716 Pulau Balikukup, Batu Putih Berau Nano Longline 5 20 400 716 Tanjung Batu Berau Nano Trap 6 18 401 716 Tanjung Batu Berau Small Trap 1 8 402 716 Tanjung Perepat Berau Nano Dropline 5 13 403 716 Teluk Sulaiman Berau Nano Dropline 29 87 404 716 Desa Sampiro Bolaang Mongondow Utara Nano Dropline 11 4	393	716	Desa Tanjung Batu	Berau	Nano	Trap	1	3
396716Logpond, Batu PutihBerauNanoDropline1016397716P. DerawanBerauNanoTrap47398716Pantai HarapanBerauNanoDropline2060399716Pulau Balikukup, Batu PutihBerauNanoLongline520400716Tanjung BatuBerauNanoTrap618401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115	394	716	Giring-giring	Berau	Nano	Dropline	22	66
397716P. DerawanBerauNanoTrap47398716Pantai HarapanBerauNanoDropline2060399716Pulau Balikukup, Batu PutihBerauNanoLongline520400716Tanjung BatuBerauNanoTrap618401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115	395	716	Labuan Cermin	Berau	Nano	Dropline	1	3
397716P. DerawanBerauNanoTrap47398716Pantai HarapanBerauNanoDropline2060399716Pulau Balikukup, Batu PutihBerauNanoLongline520400716Tanjung BatuBerauNanoTrap618401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115	396	716	Logpond, Batu Putih	Berau	Nano		10	16
399716Pulau Balikukup, Batu PutihBerauNanoLongline520400716Tanjung BatuBerauNanoTrap618401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115	397	716	== :	Berau	Nano	_	4	7
400716Tanjung BatuBerauNanoTrap618401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115	398	716	Pantai Harapan	Berau	Nano	Dropline	20	60
400716Tanjung BatuBerauNanoTrap618401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115				Berau		_	5	
401716Tanjung BatuBerauSmallTrap18402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115			- /			_		
402716Tanjung PerepatBerauNanoDropline513403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115								
403716Teluk SulaimanBerauNanoDropline2987404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115								
404716Desa SampiroBolaang Mongondow UtaraNanoMixgears114405716Desa BulontioGorontalo UtaraNanoDropline115						_		
405 716 Desa Bulontio Gorontalo Utara Nano Dropline 11 5						_		
								16

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
407	716	Desa Huntokalo	Gorontalo Utara	Nano	Dropline	10	3
408	716	Desa Tihengo	Gorontalo Utara	Nano	Dropline	26	7
409	716	Desa Dalako Bembanehe	Kepulauan Sangihe	Nano	Dropline	4	2
410	716	Desa Lipang	Kepulauan Sangihe	Nano	Dropline	5	2
411	716	Desa Paruruang	Kepulauan Sangihe	Nano	Dropline	16	8
412	716	Desa Parururang	Kepulauan Sangihe	Nano	Dropline	5	2
413	716	Kampung Lipang	Kepulauan Sangihe	Nano	Dropline	5	1
414	716	Sangihe	Kepulauan Sangihe	Nano	Dropline	2	0
415	716	Tariang Baru	Kepulauan Sangihe	Nano	Longline	4	3
416	716	Buhias	Kepulauan Sitaro	Nano	Dropline	153	124
417	716	Mahongsawang Tagulandang	Kepulauan Sitaro	Nano	Dropline	8	4
418	716	Mongsawang	Kepulauan Sitaro	Nano	Dropline	16	6
419	716	Pulau Biaro	Kepulauan Sitaro	Nano	Dropline	29	7
420	716	Desa Damau	Talaud	Nano	Dropline	8	3
421	716	Desa Makatara	Talaud	Nano	Dropline	20	24
422	716	Desa Makatara, Dusun Bawunia	Talaud	Nano	Dropline	1	1
423	716	Desa Makatara, Dusun Bawunian	Talaud	Nano	Dropline	4	3
424	716	Belakang BRI, Selumit Pantai	Tarakan	Nano	Longline	46	138
425	716	Belakang BRI, Selumit Pantai	Tarakan	Small	Longline	4	20
426	716	Mamburungan Dalam	Tarakan	Nano	Mixgears	48	144
427	717	Biak	Biak	Nano	Dropline	1796	1793
428	717	Desa Nikakamp	Biak	Nano	Dropline	4	7
429	717	Desa Tanjung Barari	Biak	Nano	Dropline	5	4
430	717	Fanindi Pantai	Manokwari	Nano	Dropline	4	10
431	717	Kampung Fanindi	Manokwari	Nano	Dropline	20	21
432	717	Manokwari	Manokwari	Nano	Dropline	6	16
433	717	PP. Sanoba	Nabire	Nano	Dropline	12	30
434	717	Wasior	Teluk Wondama	Nano	Dropline	19	23
435	718	PP. Muara Angke	Jakarta	Large	Dropline	2	97
436	718	PP. Muara Angke	Jakarta	Medium	Dropline	1	30
437	718	PP. Nizam Zachman	Jakarta	Large	Longline	4	205
438	718	Namatota	Kaimana	Large	Longline	6	379
439	718	PP. Kaimana	Kaimana	Large	Longline	1	45
440	718	Dusun Wamar Desa Durjela	Kepulauan Aru	Medium	Longline	4	73
441	718	PP. Bajomulyo	Kepulauan Aru	Large	Gillnet	1	82
442	718	PP. Benjina	Kepulauan Aru	Large	Longline	2	92
443	718	PP. Dobo	Kepulauan Aru	Large	Gillnet	8	527
444	718	PP. Dobo	Kepulauan Aru	Large	Longline	10	596
445	718	PP. Dobo	Kepulauan Aru	Medium	Dropline	93	1658
446	718	PP. Dobo	Kepulauan Aru	Medium	Gillnet	5	121
447	718	PP. Dobo	Kepulauan Aru	Medium	Longline	10	185
448	718	PP. Dobo	Kepulauan Aru	Nano	Dropline	11	30
449	718	PP. Dobo	Kepulauan Aru	Nano	Longline	8	23
450	718	PP. Dobo	Kepulauan Aru	Small	Dropline	7	56
451	718	PP. Dobo	Kepulauan Aru	Small	Longline	1	7
452	718	PP. Kaimana	Kepulauan Aru	Large	Longline	1	51
453	718	PP. Klidang Lor	Kepulauan Aru	Large	Gillnet	1	73
454	718	PP. Mayangan	Kepulauan Aru	Large	Longline	19	1405
455	718	PP. Merauke	Kepulauan Aru	Large	Longline	4	397
456	718	PP. Nizam Zachman	Kepulauan Aru	Large	Gillnet	1	92
457	718	PP. Pekalongan	Kepulauan Aru	Large	Gillnet	1	115
458	718	PU. Dobo	Kepulauan Aru	Large	Gillnet	3	285
459	718	PU. Dobo	Kepulauan Aru	Large	Longline	36	$\frac{263}{2670}$
460	718	Saumlaki	Maluku Tenggara Barat	Nano	Dropline	37	109
461	718	Saumlaki	Maluku Tenggara Barat	Small	Dropline	1	5
462	718	Saumlaki	Maluku Tenggara Barat	Small	Longline	5	37
463	718	PP. Bajomulyo	Merauke	Large	Gillnet	1	91
464	718	PP. Merauke	Merauke	Large	Dropline	1	106
104	110	11. MOLWAIN	1.101 duno	Luige	Probune	1	100

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
465	718	PP. Merauke	Merauke	Large	Gillnet	48	3873
466	718	PP. Merauke	Merauke	Large	Longline	2	213
467	718	PP. Merauke	Merauke	Medium	Gillnet	5	138
468	718	PP. Nizam Zachman	Merauke	Large	Dropline	5	455
469	718	PP. Nizam Zachman	Merauke	Large	Gillnet	13	841
470	718	PP. Nizam Zachman	Merauke	Large	Longline	1	60
471	718	PP. Poumako	Merauke	Medium	Gillnet	3	88
472	718	PP. Tegal	Merauke	Large	Gillnet	1	148
473	718	PP. Bajomulyo	Mimika	Large	Longline	1	82
474	718	PP. Dobo	Mimika	Large	Gillnet	1	75
475	718	PP. Mayangan	Mimika	Large	Gillnet	1	129
476	718	PP. Merauke	Mimika	Large	Gillnet	2	123
477	718	PP. Merauke	Mimika	Medium	Gillnet	2	49
478	718	PP. Muara Angke	Mimika	Large	Gillnet	1	92
479	718	PP. Nizam Zachman	Mimika	Large	Gillnet	1	88
480	718	PP. Paumako	Mimika	Large	Gillnet	2	60
481	718	PP. Paumako	Mimika	Medium	Gillnet	2	58
482	718	PP. Pekalongan	Mimika	Large	Gillnet	1	112
483	718	PP. Pomako	Mimika	Medium	Gillnet	1	16
484	718	PP. Poumako	Mimika	Large	Gillnet	3	90
485	718	PP. Poumako	Mimika	Medium	Gillnet	15	387
486	718	PP. Poumako	Mimika	Small	Gillnet	1	8
487	718	PP. Bajomulyo	Pati	Large	Longline	2	217
488	718	Bagansiapiapi	Probolinggo	Large	Longline	1	40
489	718	PP. Dobo	Probolinggo	Large	Longline	2	142
490	718	PP. Mayangan	Probolinggo	Large	Gillnet	3	124
491	718	PP. Mayangan	Probolinggo	Large	Longline	33	2095
492	718	PP. Mayangan	Probolinggo	Medium	Longline	7	199
493	718	Probolinggo	Probolinggo	Large	Longline	19	1408
494	718	PP. Lappa	Sinjai	Large	Dropline	1	35
495	718	PP. Lappa	Sinjai	Medium	Dropline	10	233
496	718	Timika	Timika	Medium	Longline	3	88
497	718	PP. Bajomulyo	Tual	Large	Longline	1	87
498	718	PP. Tual	Tual	Medium	Dropline	1	28
499	718	PP. Tual	Tual	Nano	Longline	1	4
500	718	PP. Tual	Tual	Small	Dropline	1	6
-		TOTAL				10329	61081

2.5 I-Fish Community

I-Fish Community only stores data that are relevant to fisheries management, whereas data on processed volume and sales, from the Smart Weighing and Measuring System, remain on servers at processing companies. Access to the I-Fish Community database is controlled by user name and password. I-Fish Community has different layers of privacy, which is contingent on the user's role in the supply chain. For instance, boat owners may view exact location of their boats, but not of the boats of other owners.

I-Fish Community has an automatic length-frequency distribution reporting system for length-based assessment of the fishery by species. The database generates length frequency distribution graphs for each species, together with life history parameters including length at maturity (Lmat), optimum harvest size (Lopt), asymptotic length-(Linf), and maximum total length (Lmax). Procedures for estimation of these length based life history characteristics are explained in the "Guide to Length Based Stock Assessment" (Mous et al., 2019). The data base also includes size limits used in the trade. These "trade limit" lengths are derived from general buying behavior (minimal weight) of processing companies. The weights are converted into lengths by using species-specific length- weight relationships.

Each length frequency distribution is accompanied by an automated length-based assessment on current status of the fishery by species. Any I-Fish Community user can access these graphs and the conclusions from the assessments. The report produces an assessment for the 50 most abundant species in the fishery, based on complete catches from the most recent complete calendar year (to ensure full year data sets). The graphs show the position of the catch length frequency distributions relative to various life history parameter values and trading limits for each species. Relative abundance of specific size groups is plotted for all years for which data are available, to indicate trends in status by species.

Immature fish, small mature fish, large mature fish, and a subset of large mature fish, namely "mega-spawners", which are fish larger than 1.1 times the optimum harvest size (Froese 2004), make up the specific size groups used in our length based assessment. For all fish of each species in the catch, the percentage in each category is calculated for further use in the length based assessment. These percentages are calculated and presented as the first step in the length based assessment as follows: W% is immature (smaller than the length at maturity), X% is small matures (at or above size at maturity but smaller than the optimum harvest size), and Y% is large mature fish (at or above optimum harvest size). The percentage of mega-spawners is Z%.

The automated assessment comprises of six elements from the catch length frequencies. These elements all work with length based indicators of various kinds to draw conclusions from species specific length frequencies in the catch.

1. Minimum size as traded compared to length and maturity.

We use a comparison between the trade limit (minimum size accepted by the trade) and the size at maturity as an indicator for incentives from the trade for either unsustainable targeting of juveniles or for more sustainable targeting of mature fish that have spawned at least once. We consider a trade limit at 10% below or above the length at maturity to be significantly different from the length at maturity and we consider trade limits to provide incentives for targeting of specific sizes of fish through price differentiation.

IF "TradeLimit" is lower than 0.9 * L-mat THEN: "The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high."

ELSE, IF "TradeLimit" is greater than or equal to 0.9 * L-mat AND "TradeLimit" is lower than or equal to 1.1 * L-mat THEN: "The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium."

ELSE, IF "TradeLimit" is greater than 1.1 * L-mat THEN: "The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low."

2. Proportion of immature fish in the catch.

With 0% immature fish in the catch as an ideal target (Froese, 2004), a target of 10% or less is considered a reasonable indicator for sustainable (or safe) harvesting (Fujita et al., 2012; Vasilakopoulos et al., 2011). Zhang et al. (2009) consider 20% immature fish in the catch as an indicator for a fishery at risk, in their approach to an ecosystem based fisheries assessment. Results from meta-analysis over multiple fisheries showed stock status over a range of stocks to fall below precautionary limits at 30% or more immature fish in the catch (Vasilakopoulos et al., 2011). The fishery is considered highly at risk when more than 50% of the fish in the catch are immature (Froese et al, 2016).

IF "% immature" is lower than or equal to 10% THEN: "At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low."

ELSE, IF "% immature" is greater than 10% AND "% immature" is lower than or equal to 20% THEN: "Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium."

ELSE, IF "% immature" is greater than 20% AND "% immature" is lower than or equal to 30% THEN: "Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium."

ELSE, IF "% immature" is greater than 30% AND "% immature" is lower than or equal to 50% THEN: "Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high."

ELSE, IF "% immature" is greater than 50% THEN: "The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high."

3. Current exploitation level.

We use the current exploitation level expressed as the percentage of fish in the catch below the optimum harvest size as an indicator for fisheries status. We consider a proportion of 65% of the fish (i.e. the vast majority in numbers) in the catch below the optimum harvest size as an indicator for growth overfishing. We also consider a majority in the catch around or above the optimum harvest size as an indicator for minimizing the impact of fishing (Froese et al., 2016). This indicator will be achieved when less than 50% of the fish in the catch are below the optimum harvest size.

IF "% immature + % small mature" is greater than or equal to 65% THEN: "The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high."

ELSE, IF "% immature + % small mature" is lower than or equal to 50% THEN: "The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low."

ELSE, IF "% immature + % small mature" is greater than 50% AND "% immature + % small mature" is lower than 65% THEN: "The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium."

4. Proportion of mega spawners in the catch.

Mega spawners are fish larger than 1.1 times the optimum harvest size. We consider a proportion of 30% or more mega spawners in the catch to be a sign of a healthy population (Froese, 2004), whereas lower proportions are increasingly leading to concerns, with proportions below 20% indicating great risk to the fishery.

IF "% mega spawners" is greater than 30% THEN: "More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low."

ELSE, IF "% mega spawners" is greater than 20% AND "% mega spawners" is lower than or equal to 30% THEN: "The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium."

ELSE, IF "% mega spawners" is lower than or equal to 20%, THEN: "Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

5. Spawning Potential Ratio.

As an indicator for Spawning Potential Ratio (SPR, Quinn and Deriso, 1999), we used the estimated spawning stock biomass divided by the spawning stock biomass of that population if it would have been pristine (see, for example, Meester et al 2001). We calculated SPR on a per-recruit basis from life-history parameters Z, F, K (von Bertalanffy), and Linf. We estimated the instantaneous total mortality (Z) from the equilibrium Beverton-Holt estimator from length data using Ehrhardt and Ault (1992) bias-correction, implemented through the function bheq2 of the R Fishmethods package.

We estimated the natural rate of mortality (M) using Froese and Pauly (2000) empirical formula with asymptotic length as estimated by species and an ambient water temperature at fishing depth estimated at about 20 degrees Celcius. With an asymptotic length for a snapper of about 80cm this results in an M of about 0.4, which aligns well with the mean of reported values from the literature (Martinez-Andrade, 2003). The fishing mortality F follows as the difference between total and natural mortality. We estimated K from Lopt and M and Linf, using the equation presented in Froese and Binohlan 2000: K = M*Lopt / 3*(Linf-Lopt).

In a perfect world, fishery biologists would know what the appropriate SPR should be for every harvested stock based on the biology of that stock. Generally, however, not enough is known about managed stocks to be so precise. However, studies show that some stocks (depending on the species of fish) can maintain themselves if the spawning stock biomass per recruit can be kept at 20 to 35% (or more) of what it was in the un-fished stock. Lower values of SPR may lead to severe stock declines (Wallace and Fletcher, 2001). Froese et al. (2016) considered a total population biomass B of half the pristine population biomass Bo to be the lower limit reference point for stock size, minimizing the impact of fishing. Using SPR and B/Bo estimates from our own data set, this Froese et al. (2016) lower limit reference point correlates with an SPR of about 40%, not far from but slightly more conservative than the Wallace and Fletcher (2001) reference point. We chose an SPR of 40% as our reference point for low risk and after similar comparisons we consider and SPR between 25% and 40% to represent a medium risk situation.

IF "SPR" is lower than 25% THEN: "SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high."

ELSE, IF "SPR" is greater than or equal to 25% AND "SPR" is lower than 40% THEN: "SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium."

ELSE, IF "SPR" is greater than or equal to 40% THEN: "SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low."

3 Fishing grounds and traceability

Fish landings made at ports in any specific WPP are not necessarily originating from fishing grounds within that same WPP. This is especially true for snappers, groupers and emperors landed and processed in Java, on the coast of WPP 712 and in South Sulawesi, on the coast of WPP 713. The issue of landings originating from multiple WPP is illustrated clearly by the fish that are processed in major processing centres like Probolinggo in East Java, on the coast of WPP 712. These fish commonly originate from a number of different fleets that can operate throughout the waters of Western, Central and Eastern Indonesian, including on distant fishing grounds in the Natuna Sea (WPP 711), the Timor Sea (WPP 573), and the Arafura Sea (WPP 718). Most of the demersal fish caught in WPP 716 however, is landed in East Kalimantan, North Sulawesi and North Halmahera, and sent to processing centres in Kalimantan and Sulawesi.

The current report with length based stock assessments for groupers, snappers, emperors and grunts in WPP 716 is based on catches that were made on WPP 716 fishing grounds only, regardless of vessel origin or landing place. SPOT Trace tracking devices on cooperating vessels indicate where catches are actually made, as dates on CODRS images can be related to locations of fishing vessels on the fishing grounds. Even without linking SPOT locations to CODRS data it is possible to distinguish between steaming and fishing activity, when SPOT data are plotted on the maps of the fishing grounds (Figures 3.1 to 3.3). Catches are allocated in our analysis to a specific WPP when SPOT data indicate that the vessel was mostly fishing in that particular WPP during the trip that the catches were photographed.

Fishing vessels from many home ports along the coastlines of East Kalimantan, North Sulawesi and North Halmahera (Figures 3.4 and 3.6) operate in WPP 716 as well as in neighbouring WPP like WPP 713, WPP 715 and WPP 717, and even sometimes in Philippines waters in the north. The Spot Trace data from the WPP 716 snapper and grouper fisheries illustrate that effective management by WPP is only possible in close coordination with fisheries management in the neighbouring WPP, in neighbouring provinces and sometimes even in neighbouring countries.

Coordination of management across WPP boundaries is especially important when fishing grounds are continues across those boundaries, with fish stocks spread over multiple WPP, and when fishing fleets freely move across WPP boundaries to target these stocks. In the case of the snapper fisheries in WPP 716, many vessels are fishing right around the border separating different management areas.

Potential IUU issues related to fish landed at ports in WPP 716 include the illegal operation by various fleets outside Indonesian waters in the southern Celebes and Philippine Seas. Additional issues include the under marking of medium scale vessels to below 30GT, the licensing of the various fleets for various WPP and the operation of fleets inside Marine Protected Areas.

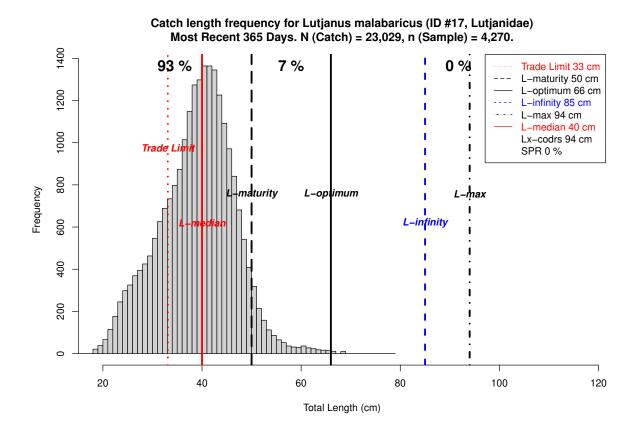
All this needs to be discussed with fishing boat captains, fish processors and traders, to prevent issues of supply line "pollution" with IUU fish. Maps with projections of SPOT trace data that illustrate the fishing grounds can be helpful tools in support of those discussions.

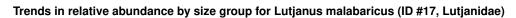
Figure 3.1: Fishing positions of dropliners participating in the CODRS program over the years 2014 - 2019 in WPP 716, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

Figure 3.2: Fishing positions of longliners participating in the CODRS program over the years 2014 - 2019 in WPP 716, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

Figure 3.3: Fishing positions of vessels applying more than one gear, participating in the CODRS program over the years 2014 - 2019 in WPP 716, as reported by Spot Trace. Gears used by the vessels in this group are a combination of droplines, longlines, traps, and gillnets. Reported positions during steaming, anchoring, or docking are excluded from this map.

Figure 3.4: A typical snapper fishing boat from Kepulauan Sitaro, Sulawesi Utara, operating in the Celebes Sea (WPP 571) and on nearby fishing grounds.




Figure 3.5: A typical snapper fishing boat from Kepulauan Sitaro, Sulawesi Utara, operating in the Celebes Sea (WPP 571) and on nearby fishing grounds.

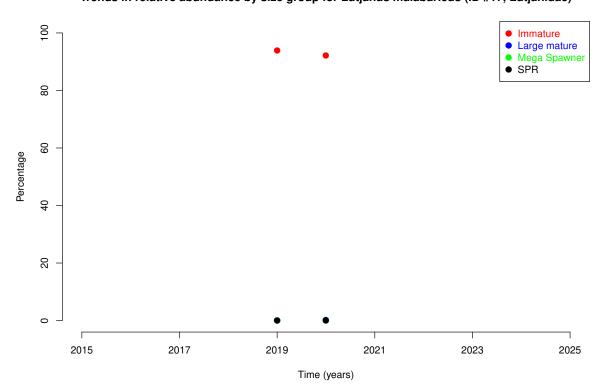


Figure 3.6: A typical snapper fishing boat from Kepulauan Berau, Kalimantan Utara, operating in the Celebes Sea (WPP 571) and on nearby fishing grounds.

4 Length-based assessments of Top 20 most abundant species in CODRS samples including all years in WPP 716

The percentages of Lutjanus malabaricus (ID #17, Lutjanidae) in most recent 365 days.

N (Catch) = 23,029, n (Sample) = 4,270

Immature (< 50cm): 93%

Small mature (>= 50 cm, < 66 cm): 7%

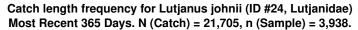
Large mature (>= 66cm): 0%

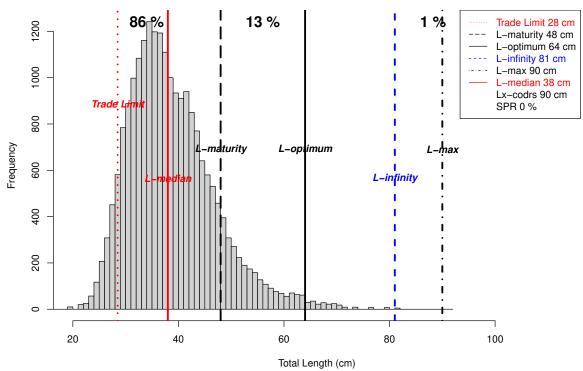
Mega spawner (≥ 72.6 cm): 0% (subset of large mature fish)

Spawning Potential Ratio: 0 %

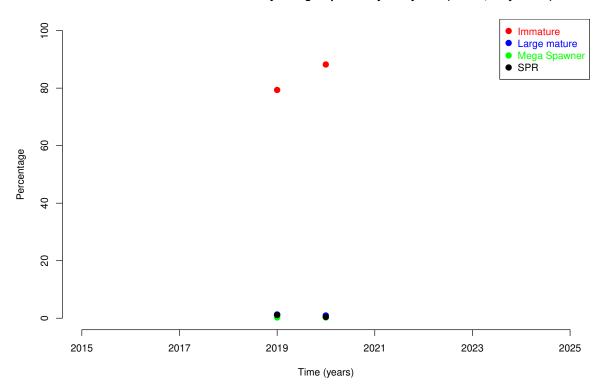
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Lutjanus johnii (ID #24, Lutjanidae)

The percentages of Lutjanus johnii (ID #24, Lutjanidae) in most recent 365 days.

N (Catch) = 21,705, n (Sample) = 3,938

Immature (< 48cm): 86%

Small mature (>= 48cm, < 64cm): 13%

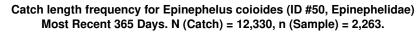
Large mature (>= 64cm): 1%

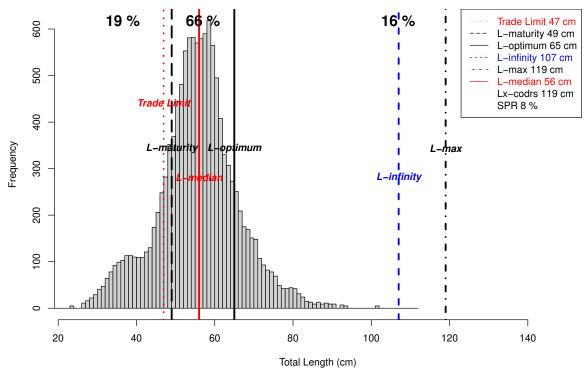
Mega spawner (≥ 70.4 cm): 0% (subset of large mature fish)

Spawning Potential Ratio: 0 %

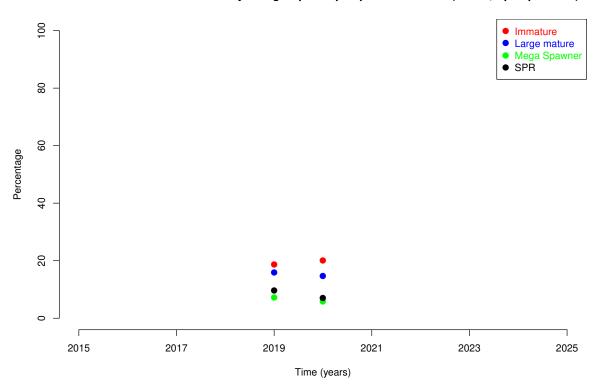
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus johnii (ID #24, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Epinephelus coioides (ID #50, Epinephelidae)

The percentages of Epinephelus coioides (ID #50, Epinephelidae) in most recent 365 days.

N (Catch) = 12,330, n (Sample) = 2,263

Immature (< 49cm): 19%

Small mature (>= 49cm, < 65cm): 66%

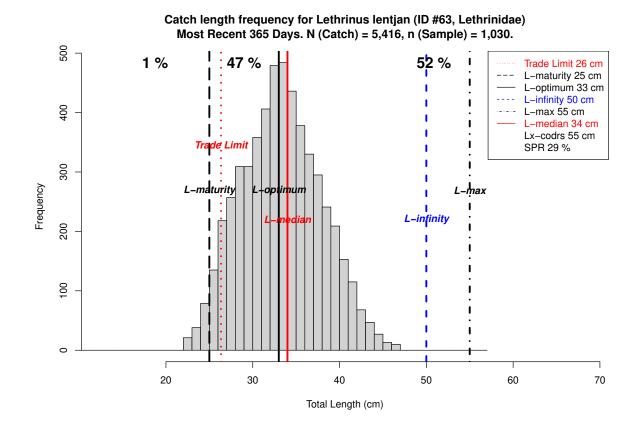
Large mature (>= 65cm): 16%

Mega spawner (>= 71.5cm): 7% (subset of large mature fish)

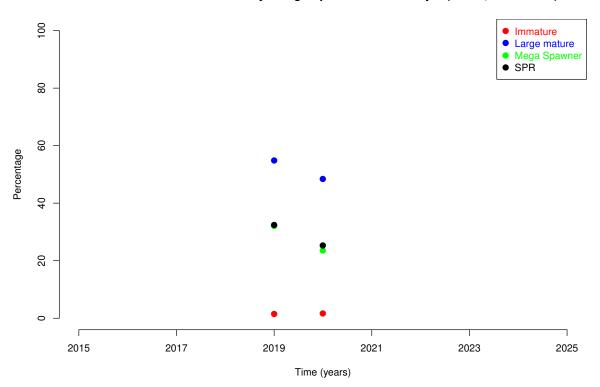
Spawning Potential Ratio: 8 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Epinephelus coioides (ID #50, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Lethrinus lentjan (ID #63, Lethrinidae)

The percentages of Lethrinus lentjan (ID #63, Lethrinidae) in most recent 365 days.

N (Catch) = 5,416, n (Sample) = 1,030

Immature (< 25cm): 1%

Small mature (>= 25cm, < 33cm): 47%

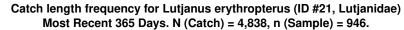
Large mature (>= 33cm): 52%

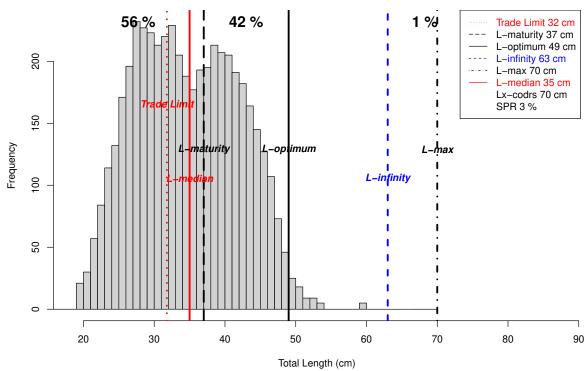
Mega spawner (>= 36.3cm): 28% (subset of large mature fish)

Spawning Potential Ratio: 29 %

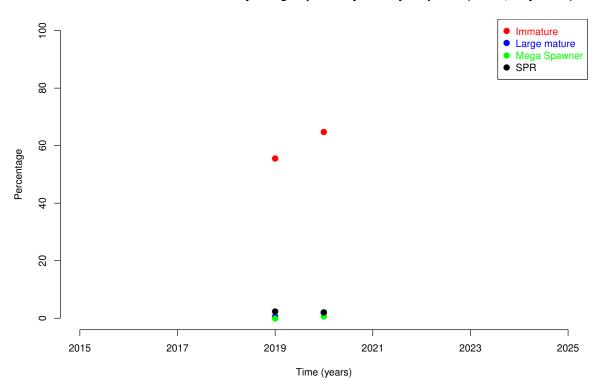
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.


The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium.

SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.


Trends in relative abundance by size group for Lethrinus lentjan (ID #63, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae)

The percentages of Lutjanus erythropterus (ID #21, Lutjanidae) in most recent 365 days.

N (Catch) = 4,838, n (Sample) = 946

Immature (< 37cm): 56%

Small mature (>= 37cm, < 49cm): 42%

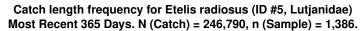
Large mature (>= 49cm): 1%

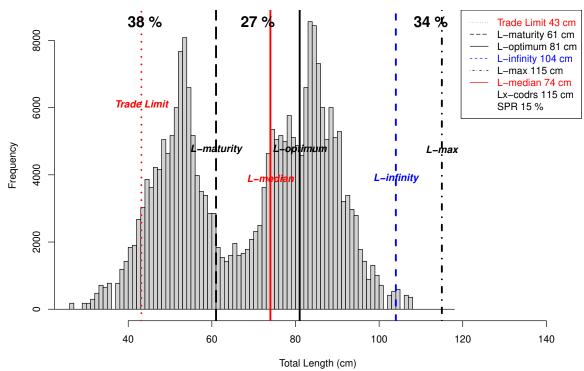
Mega spawner (≥ 53.9 cm): 0% (subset of large mature fish)

Spawning Potential Ratio: 3 %

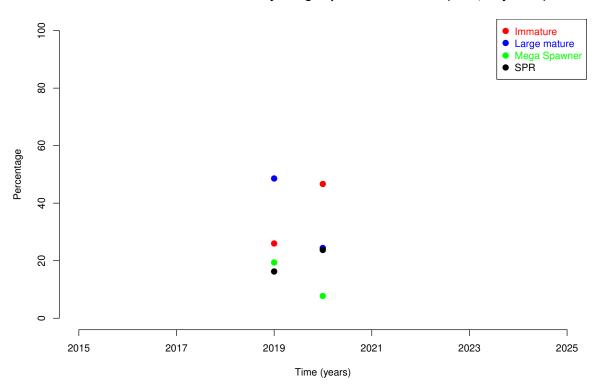
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Etelis radiosus (ID #5, Lutjanidae)

The percentages of Etelis radiosus (ID #5, Lutjanidae) in most recent 365 days.

N (Catch) = 246,790, n (Sample) = 1,386

Immature (< 61cm): 38%

Small mature (>= 61 cm, < 81 cm): 27%

Large mature (>= 81 cm): 34%

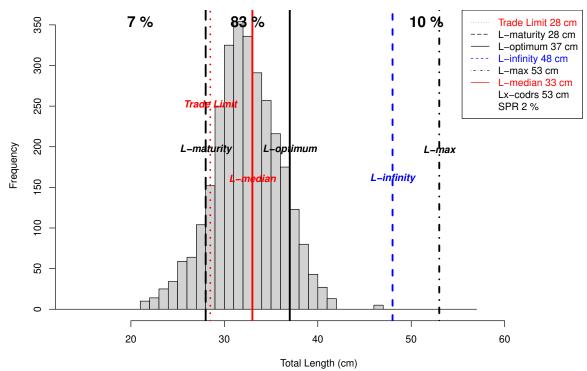
Mega spawner (>= 89.1cm): 13% (subset of large mature fish)

Spawning Potential Ratio: 15 %

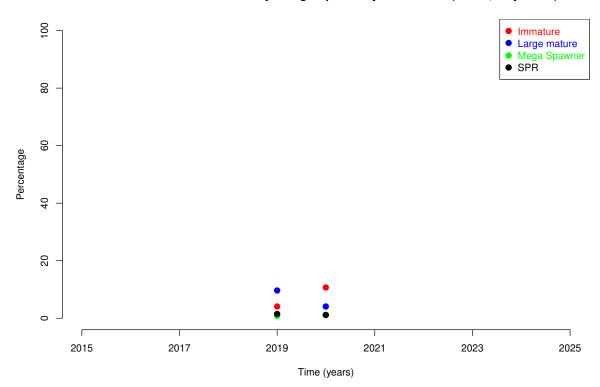
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Etelis radiosus (ID #5, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Lutjanus russelli (ID #25, Lutjanidae)

The percentages of Lutjanus russelli (ID #25, Lutjanidae) in most recent 365 days.

N (Catch) = 2,958, n (Sample) = 602

Immature (< 28cm): 7%

Small mature (>= 28 cm, < 37 cm): 83%

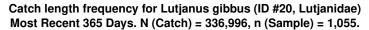
Large mature (>= 37cm): 10%

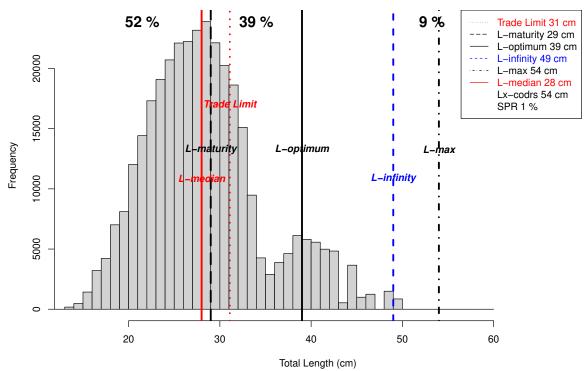
Mega spawner (>= 40.7cm): 2% (subset of large mature fish)

Spawning Potential Ratio: 2 %

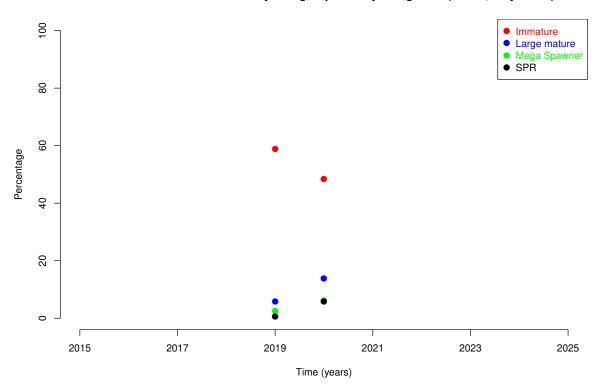
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus russelli (ID #25, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Lutjanus gibbus (ID #20, Lutjanidae)

The percentages of Lutjanus gibbus (ID #20, Lutjanidae) in most recent 365 days.

N (Catch) = 336,996, n (Sample) = 1,055

Immature (< 29cm): 52%

Small mature (>= 29 cm, < 39 cm): 39%

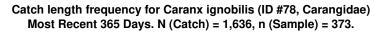
Large mature (>= 39cm): 9%

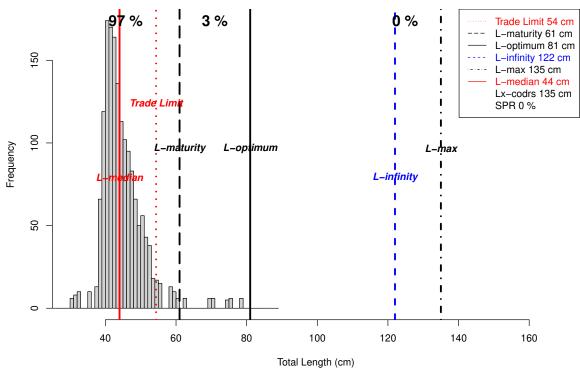
Mega spawner (≥ 42.9 cm): 4% (subset of large mature fish)

Spawning Potential Ratio: 1 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus gibbus (ID #20, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Caranx ignobilis (ID #78, Carangidae)

The percentages of Caranx ignobilis (ID #78, Carangidae) in most recent 365 days.

N (Catch) = 1,636, n (Sample) = 373

Immature (< 61cm): 97%

Small mature (>= 61 cm, < 81 cm): 3%

Large mature (>= 81cm): 0%

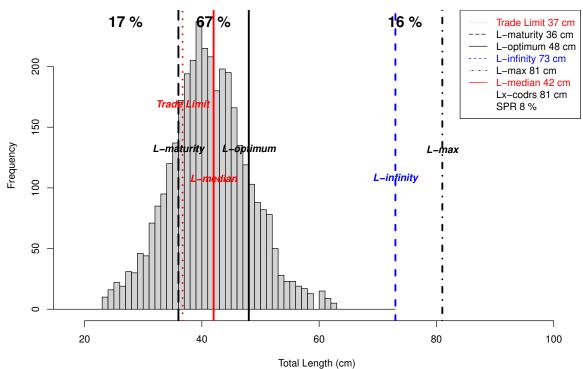
Mega spawner (≥ 89.1 cm): 0% (subset of large mature fish)

Spawning Potential Ratio: 0 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Caranx ignobilis (ID #78, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Diagramma pictum (ID #90, Haemulidae)

The percentages of Diagramma pictum (ID #90, Haemulidae) in most recent 365 days.

N (Catch) = 3,504, n (Sample) = 656

Immature (< 36cm): 17%

Small mature (>= 36cm, < 48cm): 67%

Large mature (>= 48cm): 16%

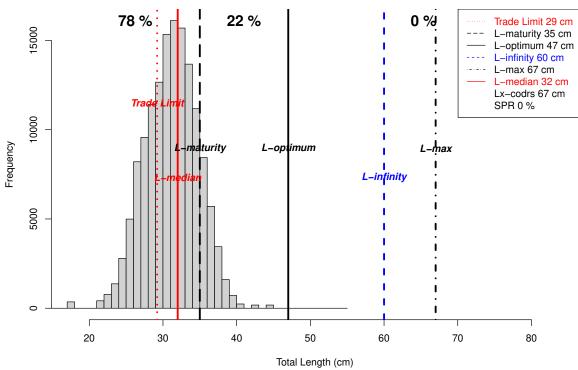
Mega spawner (≥ 52.8 cm): 6% (subset of large mature fish)

Spawning Potential Ratio: 8 %

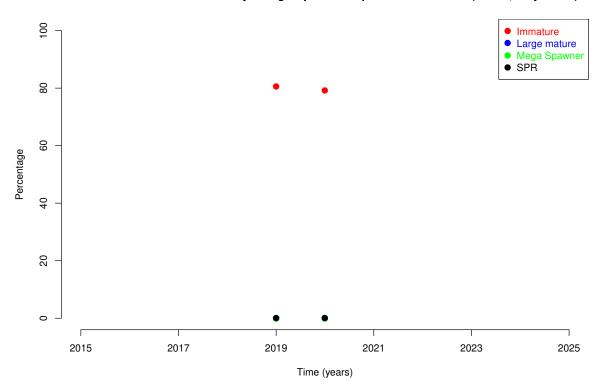
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Diagramma pictum (ID #90, Haemulidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Pristipomoides sieboldii (ID #10, Lutjanidae)

The percentages of Pristipomoides sieboldii (ID #10, Lutjanidae) in most recent 365 days.

N (Catch) = 145,031, n (Sample) = 813

Immature (< 35cm): 78%

Small mature (>= 35cm, < 47cm): 22%

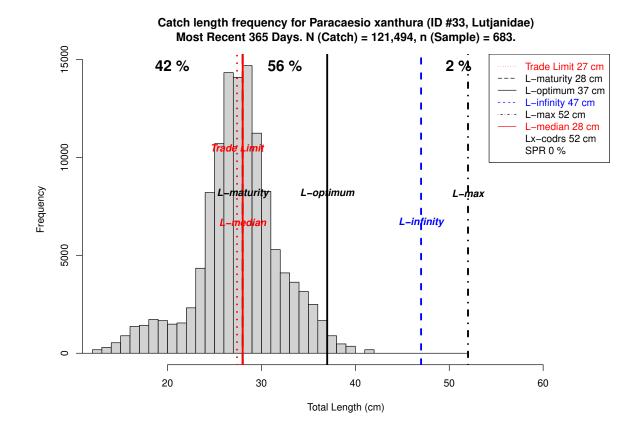
Large mature (>= 47cm): 0%

Mega spawner (≥ 51.7 cm): 0% (subset of large mature fish)

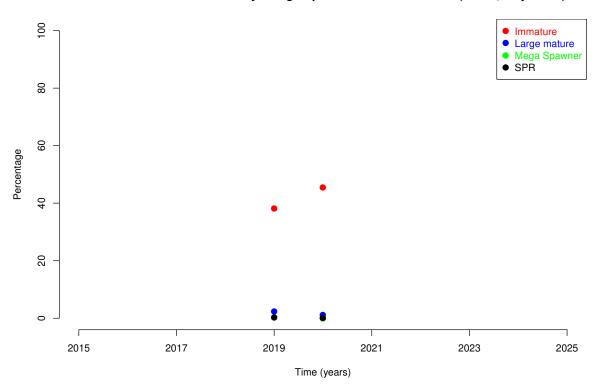
Spawning Potential Ratio: 0 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides sieboldii (ID #10, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Paracaesio xanthura (ID #33, Lutjanidae)

The percentages of Paracaesio xanthura (ID #33, Lutjanidae) in most recent 365 days.

N (Catch) = 121,494, n (Sample) = 683

Immature (< 28cm): 42%

Small mature (>= 28cm, < 37cm): 56%

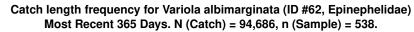
Large mature (>= 37cm): 2%

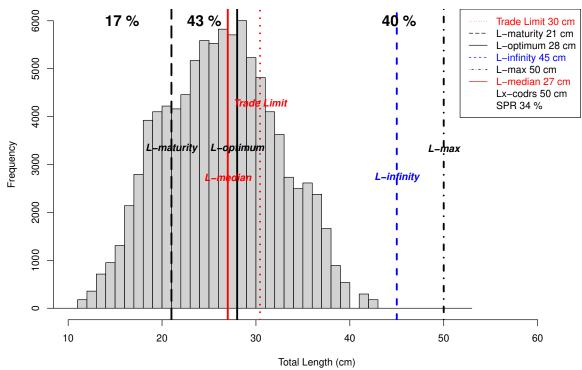
Mega spawner (≥ 40.7 cm): 0% (subset of large mature fish)

Spawning Potential Ratio: 0 %

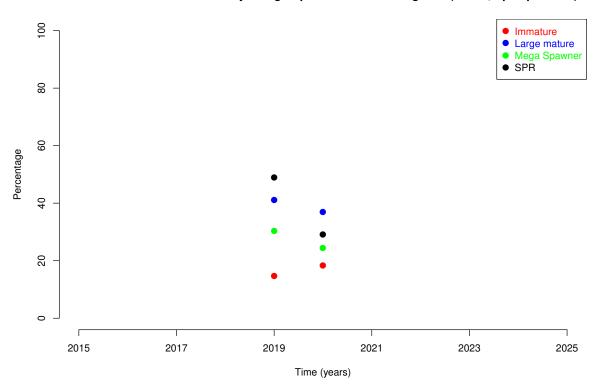
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Paracaesio xanthura (ID #33, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Variola albimarginata (ID #62, Epinephelidae)

The percentages of Variola albimarginata (ID #62, Epinephelidae) in most recent 365 days.

N (Catch) = 94,686, n (Sample) = 538

Immature (< 21cm): 17%

Small mature (>= 21cm, < 28cm): 43%

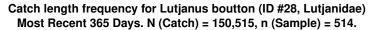
Large mature (>= 28cm): 40%

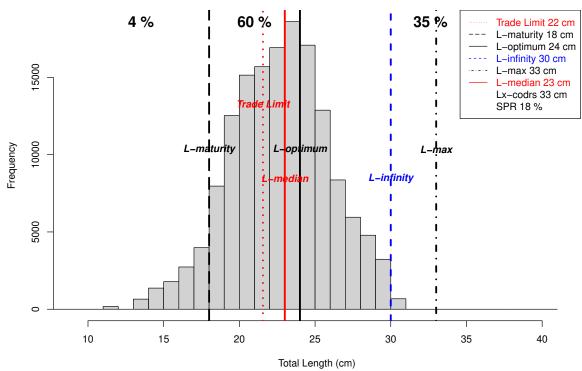
Mega spawner (>= 30.8cm): 28% (subset of large mature fish)

Spawning Potential Ratio: 34 %

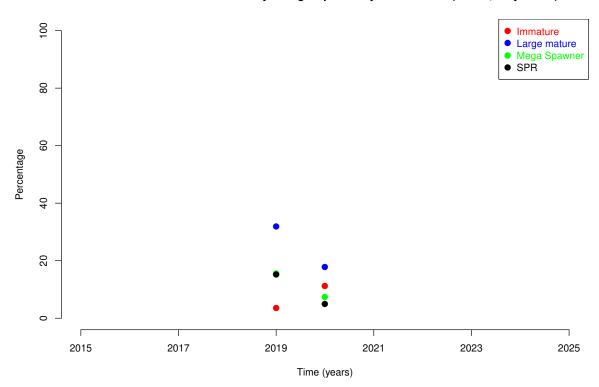
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.


The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium.


The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium.

SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.


Trends in relative abundance by size group for Variola albimarginata (ID #62, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Lutjanus boutton (ID #28, Lutjanidae)

The percentages of Lutjanus boutton (ID #28, Lutjanidae) in most recent 365 days.

N (Catch) = 150,515, n (Sample) = 514

Immature (< 18cm): 4%

Small mature (>= 18cm, < 24cm): 60%

Large mature (>= 24cm): 35%

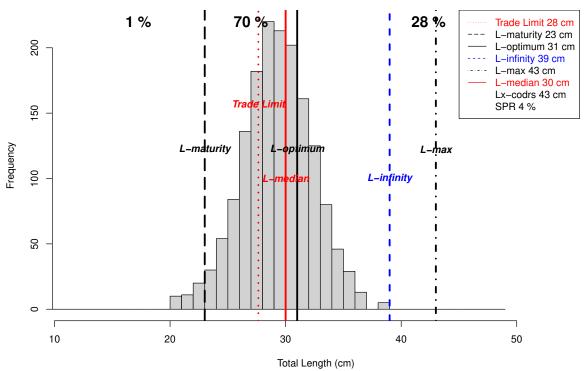
Mega spawner (≥ 26.4 cm): 15% (subset of large mature fish)

Spawning Potential Ratio: 18 %

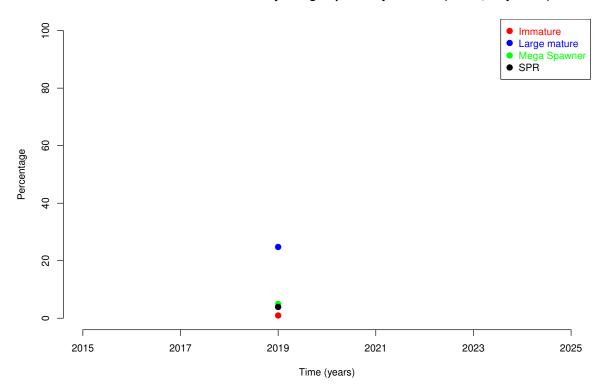
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus boutton (ID #28, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Lutjanus vitta (ID #27, Lutjanidae)


```
The percentages of Lutjanus vitta (ID #27, Lutjanidae) in most recent 365 days.
```

N (Catch) = 1,622, n (Sample) = 338

Immature (< 23cm): 1%

Small mature (>= 23cm, < 31cm): 70%

Large mature (>= 31cm): 28%

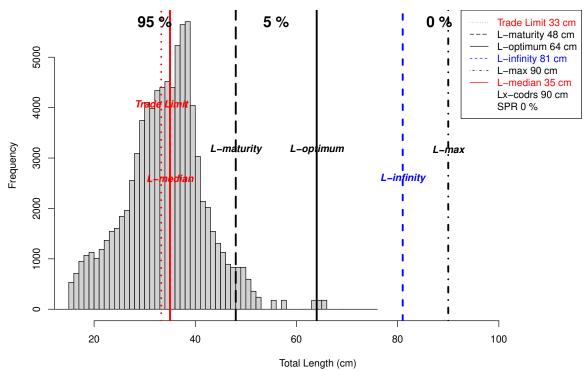
Mega spawner (≥ 34.1 cm): 6% (subset of large mature fish)

Spawning Potential Ratio: 4 %

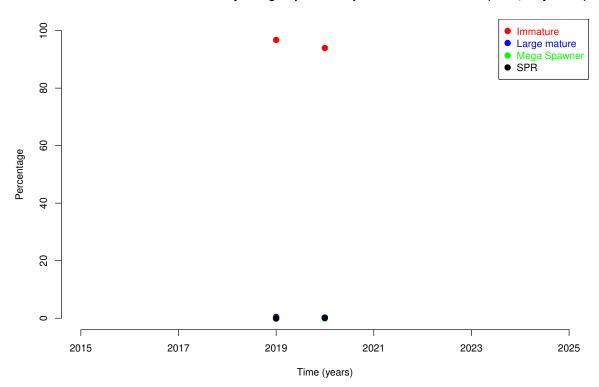
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus vitta (ID #27, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Pristipomoides filamentosus (ID #9, Lutjanidae)

The percentages of Pristipomoides filamentosus (ID #9, Lutjanidae) in most recent 365 days.

N (Catch) = 87,314, n (Sample) = 503

Immature (< 48cm): 95%

Small mature (>= 48 cm, < 64 cm): 5%

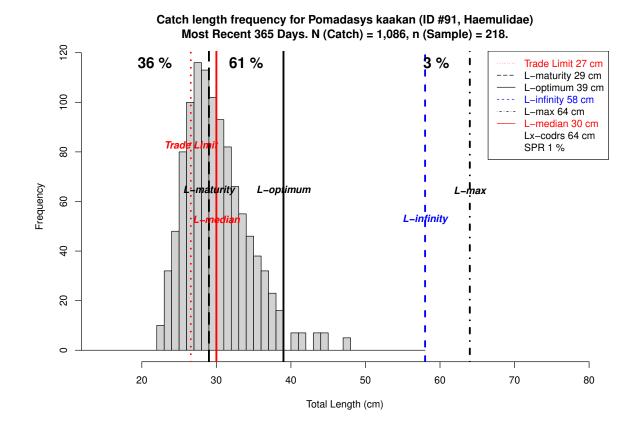
Large mature (>= 64cm): 0%

Mega spawner (≥ 70.4 cm): 0% (subset of large mature fish)

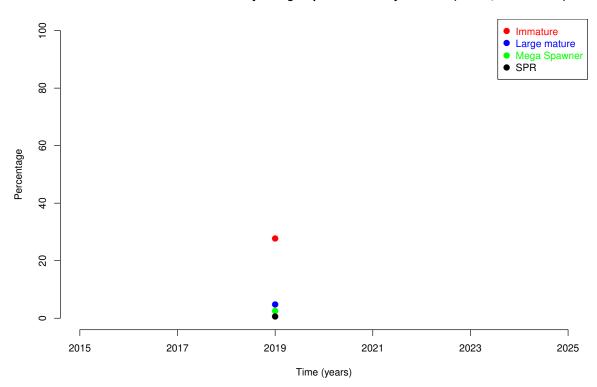
Spawning Potential Ratio: 0 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides filamentosus (ID #9, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Pomadasys kaakan (ID #91, Haemulidae)

The percentages of Pomadasys kaakan (ID #91, Haemulidae) in most recent 365 days.

N (Catch) = 1,086, n (Sample) = 218

Immature (< 29cm): 36%

Small mature (>= 29 cm, < 39 cm): 61%

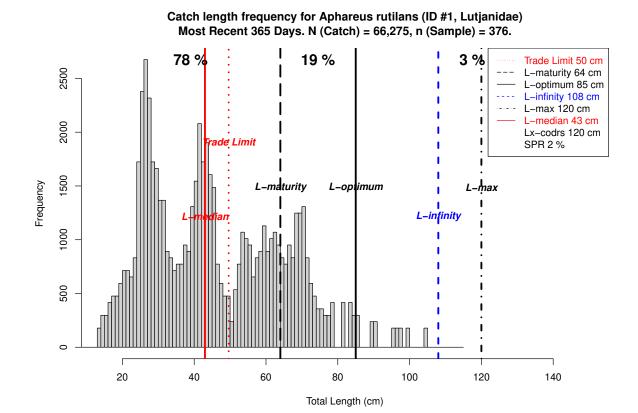
Large mature (>= 39cm): 3%

Mega spawner (≥ 42.9 cm): 2% (subset of large mature fish)

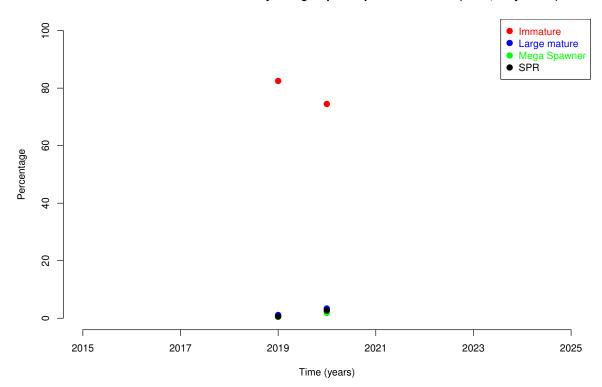
Spawning Potential Ratio: 1 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pomadasys kaakan (ID #91, Haemulidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Aphareus rutilans (ID #1, Lutjanidae)

The percentages of Aphareus rutilans (ID #1, Lutjanidae) in most recent 365 days.

N (Catch) = 66,275, n (Sample) = 376

Immature (< 64cm): 78%

Small mature (>= 64 cm, < 85 cm): 19%

Large mature (>= 85cm): 3%

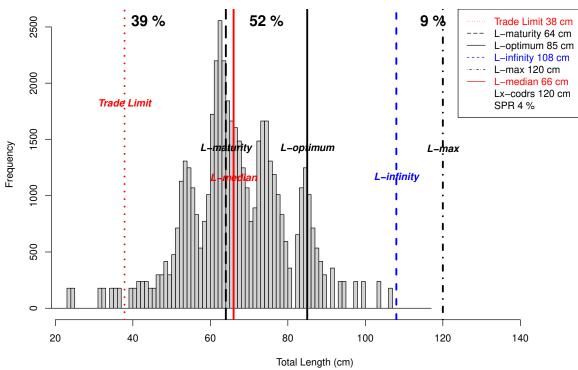
Mega spawner (≥ 93.5 cm): 1% (subset of large mature fish)

Spawning Potential Ratio: 2 %

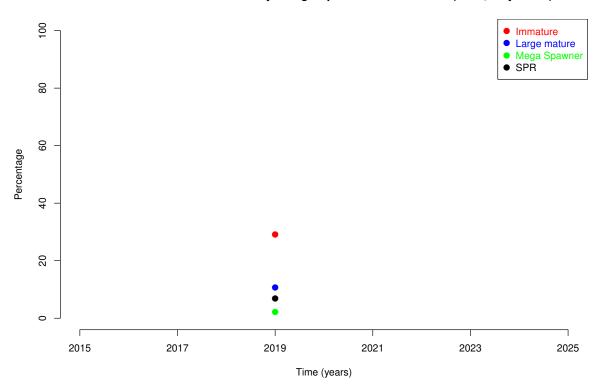
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Aphareus rutilans (ID #1, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Etelis coruscans (ID #6, Lutjanidae)

The percentages of Etelis coruscans (ID #6, Lutjanidae) in most recent 365 days.

N (Catch) = 50,104, n (Sample) = 281

Immature (< 64cm): 39%

Small mature (>= 64cm, < 85cm): 52%

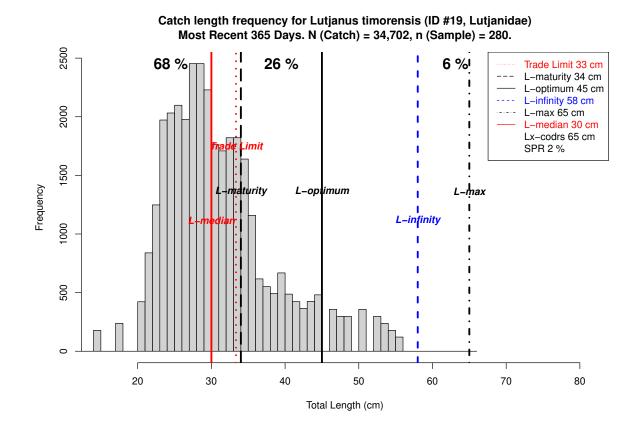
Large mature (>= 85cm): 9%

Mega spawner (≥ 93.5 cm): 3% (subset of large mature fish)

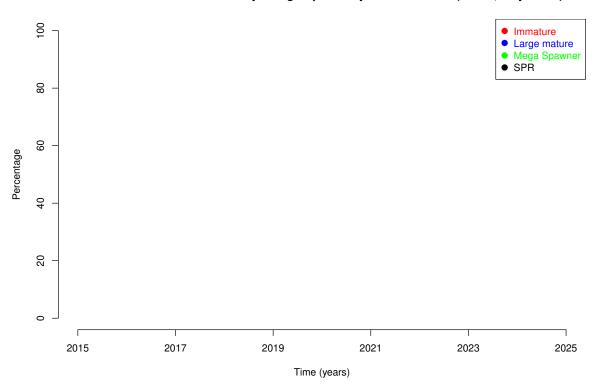
Spawning Potential Ratio: 4 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Etelis coruscans (ID #6, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Trends in relative abundance by size group for Lutjanus timorensis (ID #19, Lutjanidae)

The percentages of Lutjanus timorensis (ID #19, Lutjanidae) in most recent 365 days.

N (Catch) = 34,702, n (Sample) = 280

Immature (< 34cm): 68%

Small mature (>= 34cm, < 45cm): 26%

Large mature (>= 45cm): 6%

Mega spawner (≥ 49.5 cm): 3% (subset of large mature fish)

Spawning Potential Ratio: 2 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus timorensis (ID #19, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature trend not available.
- % Large Mature trend not available.
- % Mega Spawner trend not available.
- % SPR trend not available.

Table 4.1: Values of indicators over the most recent 365 days in length-based assessments for the top 50 most abundant species by total CODRS samples in WPP 716.

Rank	#ID	Species	Trade Limit	Immature	Exploitation	Mega Spawn	SPR
			Prop. Lmat	%	%	%	%
1	17	Lutjanus malabaricus	0.66	93	100	0	0
2	24	Lutjanus johnii	0.59	86	99	0	0
3	50	Epinephelus coioides	0.96	19	84	7	8
4	63	Lethrinus lentjan	1.05	1	48	28	29
5	21	Lutjanus erythropterus	0.86	56	99	0	3
6	5	Etelis radiosus	0.71	38	66	13	15
7	25	Lutjanus russelli	1.02	7	90	2	2
8	20	Lutjanus gibbus	1.07	52	91	4	1
9	78	Caranx ignobilis	0.89	97	100	0	0
10	90	Diagramma pictum	1.02	17	84	6	8
11	10	Pristipomoides sieboldii	0.83	78	100	0	0
12	33	Paracaesio xanthura	0.98	42	98	0	0
13	62	Variola albimarginata	1.45	17	60	28	34
14	28	Lutjanus boutton	1.20	4	65	15	18
15	27	Lutjanus vitta	1.20	1	72	6	4
16	9	Pristipomoides filamentosus	0.69	95	100	0	0
17	91	Pomadasys kaakan	0.92	36	97	2	1
18	1	Aphareus rutilans	0.78	78	97	1	2
19	6	Etelis coruscans	0.59	39	91	3	4
20	19	Lutjanus timorensis	0.98	68	94	3	2
21	60	Plectropomus maculatus	0.91	1	36	47	43
22	68	Lethrinus rubrioperculatus	1.40	2	35	48	22
23	23	Pinjalo pinjalo		unknown	unknown	unknown	unknown
24	80	Caranx sexfasciatus		unknown	unknown	unknown	unknown
25	93	Sphyraena barracuda		unknown	unknown	unknown	unknown
26	15	Lutjanus argentimaculatus		unknown	unknown	unknown	unknown
27	71	Gymnocranius griseus		unknown	unknown	unknown	unknown
28	34	Paracaesio kusakarii		unknown	unknown	unknown	unknown
29	82	Elagatis bipinnulata		unknown	unknown	unknown	unknown
30	38	Cephalopholis sexmaculata		unknown	unknown	unknown	unknown
31	85	Erythrocles schlegelii		unknown	unknown	unknown	unknown
33	70	Gymnocranius grandoculis		unknown	unknown	unknown	unknown
36	4	Etelis sp.		unknown	unknown	unknown	unknown
39	84	Seriola rivoliana		unknown	unknown	unknown	unknown

Table 4.2: Risk levels in the fisheries over the most recent 365 days for the top 50 most abundant species by total CODRS samples in WPP 716.

Rank	#ID	Species	Trade Limit	Immature	Exploitation	Mega Spawn	SPR
1	17	Lutjanus malabaricus	high	high	high	high	high
2	24	Lutjanus johnii	high	high	high	high	high
3	50	Epinephelus coioides	\mathbf{medium}	\mathbf{medium}	high	high	high
4	63	Lethrinus lentjan	\mathbf{medium}	\mathbf{low}	low	\mathbf{medium}	\mathbf{medium}
5	21	Lutjanus erythropterus	high	high	high	high	high
6	5	Etelis radiosus	high	high	high	high	high
7	25	Lutjanus russelli	\mathbf{medium}	low	high	high	high
8	20	Lutjanus gibbus	\mathbf{medium}	high	high	high	\mathbf{high}
9	78	Caranx ignobilis	high	high	high	high	high
10	90	Diagramma pictum	\mathbf{medium}	medium	\mathbf{high}	\mathbf{high}	\mathbf{high}
11	10	Pristipomoides sieboldii	\mathbf{high}	\mathbf{high}	\mathbf{high}	\mathbf{high}	high
12	33	Paracaesio xanthura	\mathbf{medium}	\mathbf{high}	\mathbf{high}	\mathbf{high}	high
13	62	Variola albimarginata	low	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}
14	28	Lutjanus boutton	low	low	\mathbf{medium}	\mathbf{high}	high
15	27	Lutjanus vitta	\mathbf{low}	\mathbf{low}	\mathbf{high}	\mathbf{high}	high
16	9	Pristipomoides filamentosus	\mathbf{high}	\mathbf{high}	\mathbf{high}	\mathbf{high}	high
17	91	Pomadasys kaakan	\mathbf{medium}	\mathbf{high}	\mathbf{high}	\mathbf{high}	high
18	1	Aphareus rutilans	\mathbf{high}	\mathbf{high}	\mathbf{high}	\mathbf{high}	high
19	6	Etelis coruscans	\mathbf{high}	high	\mathbf{high}	\mathbf{high}	high
20	19	Lutjanus timorensis	\mathbf{medium}	high	\mathbf{high}	high	\mathbf{high}
21	60	Plectropomus maculatus	\mathbf{medium}	\mathbf{low}	\mathbf{low}	\mathbf{low}	\mathbf{low}
22	68	Lethrinus rubrioperculatus	\mathbf{low}	\mathbf{low}	\mathbf{low}	\mathbf{low}	high
23	23	Pinjalo pinjalo	${f unknown}$	unknown	$\mathbf{u}\mathbf{n}\mathbf{k}\mathbf{n}\mathbf{o}\mathbf{w}\mathbf{n}$	${f unknown}$	unknown
24	80	Caranx sexfasciatus	${f unknown}$	unknown	$\mathbf{u}\mathbf{n}\mathbf{k}\mathbf{n}\mathbf{o}\mathbf{w}\mathbf{n}$	${f unknown}$	unknown
25	93	Sphyraena barracuda	${\bf unknown}$	unknown	${\bf unknown}$	${f unknown}$	unknown
26	15	Lutjanus argentimaculatus	${f unknown}$	unknown	${f unknown}$	${f unknown}$	unknown
27	71	Gymnocranius griseus	${\bf unknown}$	unknown	${\bf unknown}$	${f unknown}$	unknown
28	34	Paracaesio kusakarii	${f unknown}$	unknown	${\bf unknown}$	${f unknown}$	unknown
29	82	Elagatis bipinnulata	unknown	unknown	unknown	unknown	unknown
30	38	Cephalopholis sexmaculata	${\bf unknown}$	unknown	${\bf unknown}$	${f unknown}$	unknown
31	85	Erythrocles schlegelii	${f unknown}$	unknown	${\bf unknown}$	${f unknown}$	${\bf unknown}$
33	70	Gymnocranius grandoculis	${f unknown}$	unknown	${\bf unknown}$	${f unknown}$	${\bf unknown}$
36	4	Etelis sp.	${\bf unknown}$	unknown	$\mathbf{u}\mathbf{n}\mathbf{k}\mathbf{n}\mathbf{o}\mathbf{w}\mathbf{n}$	${f unknown}$	${\bf unknown}$
39	84	Seriola rivoliana	unknown	unknown	unknown	unknown	unknown

Table 4.3: Trends during recent years for SPR and relative abundance by size group for the top 50 most abundant species by total CODRS samples in WPP 716.

Rank	#ID	Species	% Immature	% Large Mature	% Mega Spawner	% SPR
1	17	Lutjanus malabaricus	unknown	unknown	unknown	unknown
2	24	Lutjanus johnii	unknown	unknown	unknown	unknown
3	50	Epinephelus coioides	${\bf unknown}$	unknown	unknown	unknown
4	63	Lethrinus lentjan	${\bf unknown}$	unknown	unknown	unknown
5	21	Lutjanus erythropterus	${\bf unknown}$	unknown	unknown	unknown
6	5	Etelis radiosus	${\bf unknown}$	unknown	unknown	unknown
7	25	Lutjanus russelli	unknown	unknown	unknown	unknown
8	20	Lutjanus gibbus	unknown	unknown	unknown	unknown
9	78	Caranx ignobilis	${\bf unknown}$	unknown	unknown	unknown
10	90	Diagramma pictum	${\bf unknown}$	unknown	unknown	unknown
11	10	Pristipomoides sieboldii	unknown	unknown	unknown	unknown
12	33	Paracaesio xanthura	unknown	unknown	unknown	unknown
13	62	Variola albimarginata	${\bf unknown}$	unknown	unknown	unknown
14	28	Lutjanus boutton	unknown	unknown	unknown	unknown
15	27	Lutjanus vitta	unknown	unknown	unknown	unknown
16	9	Pristipomoides filamentosus	${\bf unknown}$	${f unknown}$	${f unknown}$	unknown
17	91	Pomadasys kaakan	unknown	unknown	unknown	unknown
18	1	Aphareus rutilans	unknown	unknown	unknown	unknown
19	6	Etelis coruscans	${\bf unknown}$	${f unknown}$	${f unknown}$	unknown
20	19	Lutjanus timorensis	${f unknown}$	${f unknown}$	${f unknown}$	$\mathbf{u}\mathbf{n}\mathbf{k}\mathbf{n}\mathbf{o}\mathbf{w}\mathbf{n}$
21	60	Plectropomus maculatus	${f unknown}$	${f unknown}$	${f unknown}$	$\mathbf{u}\mathbf{n}\mathbf{k}\mathbf{n}\mathbf{o}\mathbf{w}\mathbf{n}$
22	68	Lethrinus rubrioperculatus	unknown	unknown	unknown	unknown
23	23	Pinjalo pinjalo	${\bf unknown}$	${f unknown}$	${f unknown}$	unknown
24	80	Caranx sexfasciatus	${\bf unknown}$	${f unknown}$	${f unknown}$	unknown
25	93	Sphyraena barracuda	${f unknown}$	${f unknown}$	${f unknown}$	$\mathbf{u}\mathbf{n}\mathbf{k}\mathbf{n}\mathbf{o}\mathbf{w}\mathbf{n}$
26	15	Lutjanus argentimaculatus	${\bf unknown}$	${f unknown}$	${f unknown}$	unknown
27	71	Gymnocranius griseus	${\bf unknown}$	${f unknown}$	${f unknown}$	unknown
28	34	Paracaesio kusakarii	${\bf unknown}$	unknown	unknown	unknown
29	82	Elagatis bipinnulata	${\bf unknown}$	unknown	${f unknown}$	unknown
30	38	Cephalopholis sexmaculata	${\bf unknown}$	unknown	unknown	unknown
31	85	Erythrocles schlegelii	${\bf unknown}$	unknown	unknown	unknown
33	70	Gymnocranius grandoculis	${\bf unknown}$	unknown	${f unknown}$	unknown
36	4	Etelis sp.	${\bf unknown}$	unknown	${f unknown}$	unknown
39	84	Seriola rivoliana	unknown	unknown	unknown	unknown

5 Discussion and conclusions

Fishing with bottom long lines and traps for snappers, groupers, emperors and grunts in WPP 716 occurs on shelf areas in the western Celebes Sea along the coast of East Kalimantan. Preferred bottom long line and trap fishing grounds have a relatively flat bottom profile at depths ranging from 50 to 150 meters. Drop line fishing for the same general species spectrum occurs around deep reefs on the shelf, and on the slopes dropping into the Celebes Sea and western Pacific Ocean, mainly at depths between 50 and 350 meters. Snappers, groupers, emperors and grunts in WPP 716 are also targeted with deep set bottom gillnets, as well as by "mixed gear" fisheries, which operate traps, simultaneously with hook and line gear.

The deep water hook and line fisheries for snappers, groupers and emperors are fairly clean fisheries when it comes to the species spectrum in the catch, even though they are much more species-rich then is sometimes assumed, also within the snapper category. There is some by-catch of small sharks, cobia, trevallies and other species (Table 5.7 and 5.8), which are not discarded but also sold, into separate supply lines. The catch of snappers, groupers and emperors usually goes to traders supplying middle and higher end local and export markets for those specific species groups.

Drop line fisheries are characterized by a very low impact on habitat at the fishing grounds, whereas some more (but still limited) impact from entanglement can be expected from bottom long lines and traps. No major impact is evident from either one of the two demersal hook and line fisheries, certainly nothing near what is caused for example by destructive dragging gear. However, due to limited available habitat (fishing grounds) and predictable locations of fish concentrations, combined with a very high fishing effort on the best known fishing grounds, as well as the targeting of juveniles, there is a very high potential for overfishing in the demersal fisheries for snappers groupers and emperors.

Risks of overfishing is high for all the larger snappers which are commonly targeted in WPP 716 (Table 4.1 and Table 4.2), and SPR is dangerously low (Table 5.1) especially for those species which complete their life cycle in the habitats covered by the fishing grounds and which at the same time are easily caught with drop line and bottom long line gears. Snapper feeding aggregations occur at predictable and well known locations and the snappers are therefore among the most vulnerable species in these fisheries. Fishing mortality (from deep slope hook and line fisheries combined with trap and gillnet fisheries) for all major target snapper species seems to be unacceptably high while the catches of these species include large percentages of relatively small and immature specimen. For many species of snappers, sizes are consistently targeted and landed well below the size where these fish reach maturity. Large specimen of the major target species are already becoming extremely rare on the main fishing grounds.

Fishing effort and fishing mortality have been far too high in recent years in WPP 716 and the situation is currently not improving. Time trends for top 10 species (ranked by abundance) show continued decline of the stocks, judging from trends in size based indicators (Table 4.3). Those trends in length based indicators can also be compared with trends in CpUE by gear types and boat size category (Tables 5.2 to 5.6), although fishing at aggregation sites (including bottom FADs) may be masking the direct effect on CpUE. We do see that for many fleet segments the CpUE is lower in WPP 716 than in some of the south eastern fisheries management areas, which may be part of the reason that many of the larger drop line vessels from North Sulawesi fish all the way in the south

eastern Banda Sea.

Overall we are currently looking mainly at a high risk of overfishing for all major snapper species in WPP 716, combined with a worrisome trend of deterioration in these snapper stocks, based on the size based stock assessments from the bottom long line fisheries. Interestingly though, the groupers seem to be less vulnerable to the deep slope hook and line fisheries than the snappers are. Impact by the deep slope drop line and long line fisheries on grouper populations is limited compared to the snappers. This may be because most groupers are staying closer to high rugosity bottom habitat, which is avoided by some vessels due to risk of entanglement, while drop line fishers are targeting schooling snappers that are hovering higher in the water column, above the grouper habitat.

Fishing mortality (from deep demersal fisheries) in large mature groupers seems to be considerably lower than what we see for the snappers. Groupers generally mature as females at a size relative to their maximum size which is lower than for snappers. This strategy enables them to reproduce before they are being caught, although fecundity is still relatively low at sizes below the optimum length. Fecundity for the population as a whole peaks at the optimum size for each species, and this is also the size around which sex change from females to males happens in groupers. Separate analysis of all grouper data shows that most groupers have already reached or passed their optimum size (and the size where sex change takes place) when they are caught by the deep slope hook and line fisheries.

For those grouper species which spend all or most of their life cycle in deep water habitats, the relatively low vulnerability to the deep slope hook and line fisheries is very good news. For other grouper species which spend major parts of their life cycle in shallower habitats, like coral reefs or mangroves or estuaries for example, the reality is that their populations in general are in extremely bad shape due to excessive fishing pressure by small scale fisheries in those shallower habitats. This situation is also evident for a few snapper species such as for example the mangrove jack.

Overall there is a clear scope for some straightforward fisheries improvements supported by relatively uncomplicated fisheries management policies and regulations. Our first recommendation for industry-led fisheries improvements is for traders to adjust trading limits (incentives to fishers) species by species (which they are basically doing already) to the length at maturity for each species. For a number of important species the trade limits need adjustments upwards, with government support through regulations on minimum allowable sizes. Many of the deep water snappers are traded at sizes that are too small, and this impairs sustainability. The impact is clearly visible already in landed catches.

Adjustment upwards of trading limits towards the size at first maturity would be a straightforward improvement in these fisheries. By refusing undersized fish in high value supply lines, the market can provide incentives for captains of fishing boats to target larger specimen. The captains can certainly do this by using their day to day experiences, selecting locations, fishing depths, habitat types, hook sizes, etc. Literature data shows habitat separation between size groups in many species, as well as size selectivity of specific hook sizes. Captains know about this from experience.

Besides size selectivity, fishing effort is a very important factor in resulting overall catch and size frequency of the catch. All major target snappers show a rapid decline in numbers above the size where the species becomes most vulnerable to the fisheries. This rapid decline in numbers, as visible in the LFD graphs, indicates a high fishing mortality for the vulnerable size classes. Fishing effort is probably too high to be sustainable and many species seem to be at risk in the deep drop and long line fisheries, judging from a number of indicators as presented in this report. At present these fisheries show clear signs of over-exploitation in WPP 716.

One urgently needed fisheries management intervention is to cap fishing effort (number of boats) at current level and to start looking at incentives for effort reductions. A reduction of effort will need to be supported and implemented by government to ensure an even playing field among fishing companies. An improved licensing system and an effort control system based on the Indonesia's mandatory Vessel Monitoring System, using more accurate data on Gross Tonnage for all fishing boats, could be used to better manage fishing effort. Continuous monitoring of trends in the various presented indicators will show in which direction these fisheries are heading and what the effects are of any fisheries management measures in future years.

Government policies and regulations are needed and can be formulated to support fishers and traders with the implementation of improvements across the sector. Our recommendations for supporting government policies in relation to the snapper fisheries include:

- Use scientific (Latin) fish names in fisheries management and in trade.
- Incorporate length-based assessments in management of specific fisheries.
- Develop species-specific length based regulations for these fisheries.
- Implement a controlled access management system for regulation of fishing effort on specific fishing grounds.
- Increase public awareness on unknown species and preferred size classes by species.
- Incorporate traceability systems in fleet management by fisheries and by fishing ground.

Recommendations for specific regulations may include:

- Make mandatory correct display of scientific name (correct labeling) of all traded fish (besides market name).
- Adopt legal minimum sizes for specific or even all traded species, at the length at maturity for each species.
- Make mandatory for each fishing vessel of all sizes to carry a simple GPS tracking device that needs to be functioning at all times. Indonesia already has a mandatory Vessel Monitoring System for vessels larger than 30 GT, so Indonesia could consider expanding this requirement to fishing vessels of smaller sizes.
- Cap fishing effort in the snapper fisheries at the current level and explore options to reduce effort to more sustainable levels.

Table 5.1: SPR values over the period 2016 to 2024 for the top 20 most abundant species in CODRS samples in WPP 716, based on total catch LFD analysis, for all gear types combined and adjusted for relative effort by gear type.

Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024
1	Lutjanus malabaricus	NA	NA	NA	0	0	NA	NA	NA	NA
2	Lutjanus johnii	NA	NA	NA	1	0	NA	NA	NA	NA
3	Epinephelus coioides	NA	NA	NA	10	7	NA	NA	NA	NA
4	Lethrinus lentjan	NA	NA	NA	33	25	NA	NA	NA	NA
5	Lutjanus erythropterus	NA	NA	NA	2	2	NA	NA	NA	NA
6	Etelis radiosus	NA	NA	NA	16	24	NA	NA	NA	NA
7	Lutjanus russelli	NA	NA	NA	2	1	NA	NA	NA	NA
8	Lutjanus gibbus	NA	NA	NA	1	6	NA	NA	NA	NA
9	Caranx ignobilis	NA	NA	NA	0	0	NA	NA	NA	NA
10	Diagramma pictum	NA	NA	NA	5	6	NA	NA	NA	NA
11	Pristipomoides sieboldii	NA	NA	NA	0	0	NA	NA	NA	NA
12	Paracaesio xanthura	NA	NA	NA	0	0	NA	NA	NA	NA
13	Variola albimarginata	NA	NA	NA	49	29	NA	NA	NA	NA
14	Lutjanus boutton	NA	NA	NA	15	5	NA	NA	NA	NA
15	Lutjanus vitta	NA	NA	NA	4	NA	NA	NA	NA	NA
16	Pristipomoides filamentosus	NA	NA	NA	0	0	NA	NA	NA	NA
17	Pomadasys kaakan	NA	NA	NA	1	NA	NA	NA	NA	NA
18	Aphareus rutilans	NA	NA	NA	1	3	NA	NA	NA	NA
19	Etelis coruscans	NA	NA	NA	7	NA	NA	NA	NA	NA
20	Lutjanus timorensis	NA								

Table 5.2: CpUE (kg/GT/day) trends by fleet segment for Etelis radiosus in WPP 716

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	NA	NA	18.3	11.8	NA	NA	NA	NA
Nano Longline	NA	NA	NA	0.0	0.0	NA	NA	NA	NA
Small Dropline	NA								
Small Longline	NA	NA	NA	11.5	7.7	NA	NA	NA	NA
Medium Dropline	NA	NA	NA	NA	7.7	NA	NA	NA	NA
Medium Longline	NA								
Large Dropline	NA								
Large Longline	NA								

Table 5.3: CpUE (kg/GT/day) trends by fleet segment for Etelis coruscans in WPP 716

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	NA	NA	4.5	1.3	NA	NA	NA	NA
Nano Longline	NA								
Small Dropline	NA								
Small Longline	NA	NA	NA	2.8	0.9	NA	NA	NA	NA
Medium Dropline	NA	NA	NA	NA	0.9	NA	NA	NA	NA
Medium Longline	NA								
Large Dropline	NA								
Large Longline	NA								

Table 5.4: CpUE (kg/GT/day) trends by fleet segment for Caranx ignobilis in WPP 716

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	NA	NA	0.7	0.5	NA	NA	NA	NA
Nano Longline	NA	NA	NA	4.1	5.0	NA	NA	NA	NA
Small Dropline	NA								
Small Longline	NA	NA	NA	1.6	1.8	NA	NA	NA	NA
Medium Dropline	NA	NA	NA	1.4	1.8	NA	NA	NA	NA
Medium Longline	NA								
Large Dropline	NA								
Large Longline	NA								

Table 5.5: CpUE (kg/GT/day) trends by fleet segment for Lutjanus gibbus in WPP 716

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	NA	NA	0.9	0.4	NA	NA	NA	NA
Nano Longline	NA	NA	NA	2.0	2.1	NA	NA	NA	NA
Small Dropline	NA								
Small Longline	NA	NA	NA	1.1	0.8	NA	NA	NA	NA
Medium Dropline	NA	NA	NA	0.1	0.8	NA	NA	NA	NA
Medium Longline	NA								
Large Dropline	NA								
Large Longline	NA								

Table 5.6: CpUE (kg/GT/day) trends by fleet segment for all species in WPP 716

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	NA	NA	35.6	23.9	NA	NA	NA	NA
Nano Longline	NA	NA	NA	19.7	29.0	NA	NA	NA	NA
Small Dropline	NA								
Small Longline	NA	NA	NA	28.9	24.6	NA	NA	NA	NA
Medium Dropline	NA	NA	NA	10.6	24.6	NA	NA	NA	NA
Medium Longline	NA								
Large Dropline	NA								
Large Longline	NA								

Table 5.7: Sample sizes over the period 2016 to 2024 for the others species in WPP 716 Dropline

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Catch
Acanthuridae	0	0	0	73	90	0	0	0	0	163	0.362
Ariidae	0	0	0	0	0	0	0	0	0	0	0.000
Ariommatidae	0	0	0	179	46	0	0	0	0	225	0.500
Balistidae	0	0	0	70	73	0	0	0	0	143	0.318
Bramidae	0	0	0	8	1	0	0	0	0	9	0.020
Caesionidae	0	0	0	0	0	0	0	0	0	0	0.000
Carangidae	0	0	0	58	49	0	0	0	0	107	0.238
Coryphaenidae	0	0	0	6	0	0	0	0	0	6	0.013
Ephippidae	0	0	0	3	0	0	0	0	0	3	0.007
Epinephelidae	0	0	0	559	441	0	0	0	0	1000	2.222
Gempylidae	0	0	0	10	0	0	0	0	0	10	0.022
Haemulidae	0	0	0	8	2	0	0	0	0	10	0.022
Hemiramphidae	0	0	0	5	0	0	0	0	0	5	0.011
Holocentridae	0	0	0	608	188	0	0	0	0	796	1.769
Istiophoridae	0	0	0	1	0	0	0	0	0	1	0.002
Labridae	0	0	0	6	0	0	0	0	0	6	0.013
Lethrinidae	0	0	0	719	688	0	0	0	0	1407	3.126
Lutjanidae	0	0	0	288	373	0	0	0	0	661	1.469
Mullidae	0	0	0	173	203	0	0	0	0	376	0.835
Muraenesocidae	0	0	0	0	0	0	0	0	0	0	0.000
Nemipteridae	0	0	0	31	103	0	0	0	0	134	0.298
Other	0	0	0	138	125	0	0	0	0	263	0.584
Priacanthidae	0	0	0	83	37	0	0	0	0	120	0.267
Rays	0	0	0	0	1	0	0	0	0	1	0.002
Scaridae	0	0	0	17	12	0	0	0	0	29	0.064
Scombridae	0	0	0	180	189	0	0	0	0	369	0.820
Serranidae	0	0	0	0	1	0	0	0	0	1	0.002
Sharks	0	0	0	6	5	0	0	0	0	11	0.024
Siganidae	0	0	0	3	0	0	0	0	0	3	0.007
Sphyraenidae	0	0	0	1	0	0	0	0	0	1	0.002
Total	0	0	0	3233	2627	0	0	0	0	5860	13.021

Table 5.8: Sample sizes over the period 2016 to 2024 for the others species in WPP 716 Longline

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Catch
Acanthuridae	0	0	0	0	2020	0	0	0	0	2	$\frac{70004}{0.004}$
Ariidae	0	0	0	0	0	0	0	0	0	0	0.004
Ariommatidae	0	0	0	0	0	0	0	0	0	0	0.000
Balistidae	0	0	0	2	1	0	0	0	0	3	0.007
Bramidae	0	0	0	0	0	0	0	0	0	0	0.007
Caesionidae	0	0	0	0	0	0	0	0	0	0	0.000
Carangidae	0	0	0	9	4	0	0	0	0	13	0.000
Coryphaenidae	0	0	0	0	0	0	0	0	0	0	0.029
Ephippidae	0	0	0	0	0	0	0	0	0	0	0.000
Epinephelidae Epinephelidae	0	0	0	81	29	0	0	0	0	110	0.000
Gempylidae	0	0	0	0	0	0	0	0	0	0	0.000
Haemulidae	0	0	0	5	2	0	0	0	0	7	0.000
Hemiramphidae	0	0	0	0	0	0	0	0	0	0	0.000
Holocentridae	0	0	0	63	26	0	0	0	0	89	0.000 0.198
Istiophoridae	0	0	0	0	0	0	0	0	0	0	0.000
Labridae	0	0	0	2	0	0	0	0	0	2	0.000
Lethrinidae	0	0	0	458	114	0	0	0	0	572	1.271
Lutjanidae	0	0	0	208	131	0	0	0	0	339	0.753
Mullidae	0	0	0	3	1	0	0	0	0	4	0.009
Muraenesocidae	0	0	0	2	0	0	0	0	0	2	0.003
Nemipteridae	0	0	0	$\frac{2}{21}$	2	0	0	0	0	23	0.004 0.051
Other	0	0	0	34	4	0	0	0	0	38	0.031 0.084
Priacanthidae	0	0	0	218	31	0	0	0	0	249	0.054 0.553
Rays	0	0	0	2	6	0	0	0	0	8	0.003
Scaridae	0	0	0	0	0	0	0	0	0	0	0.000
Scombridae	0	0	0	1	3	0	0	0	0	4	0.000
Serranidae	0	0	0	0	0	0	0	0	0	0	0.009
Sharks	0	0	0	11	0	0	0	0	0	11	0.000 0.024
Siganidae	0	0	0	0	0	0	0	0	0	0	0.024 0.000
Sphyraenidae	0	0	0	0	0	0	0	0	0	0	0.000
	0	0	0			0		0			
Total	U	U	U	1120	356	U	0	U	0	1476	3.280

6 References

Australian Surveying & Land Information Group (AUSLIG), 1996. Commonwealth Department of Industry Science and Resources. MAP 96/523.21.1.

Ehrhardt, N.M. and Ault, J.S. 1992. Analysis of two length-based mortality models applied to bounded catch length frequencies. Trans. Am. Fish. Soc. 121:115-122.

Froese, R. 2004. Keep it simple: three indicators to deal with overfishing. Fish and Fisheries 5: 86-91.

Froese, R. and Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 56:758-773.

Froese, R. and D. Pauly, (eds.) 2000. FishBase 2000: concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines. 344 p.

Froese, R., Winker, H., Gascuel, D., Sumaila, U.R. and Pauly, D. 2016. Minimizing the impact of ?shing. Fish and Fisheries DOI: 10.1111/faf.12146.

Fujita, R., Karr, K., Apel, A. and Mateo, I. 2012. Guide to the use of Froese sustainability indicators to assess and manage data-limited fish stocks. Oceans Program, Environmental Defense Fund, Research and Development Team.

Martinez-Andrade F., 2003. A comparison of life histories and ecological aspects among snappers (Pisces: lutjanidae). Dissertation http://etd.lsu.edu/docs/available/etd-1113103-230518/unrestricted/Martinez-Andrade dis.pdf

Meester G.A., Ault J.S., Smith S.G., Mehrotra A. 2001. An integrated simulation modeling and operations research approach to spatial management decision making. Sarsia 86:543-558.

Prescott, V., 2000. East Timor's Potential Maritime Boundaries. East Timor and its Maritime Dimensions: Legal and Policy Implications for Australia, Australian Institute of International Affairs, Canberra.

Quinn, T.J. and Deriso R.B. 1999. Quantitative Fish Dynamics. New York: Oxford University Press.

Vasilakopoulos, P., O'Neill, F. G. and Marshall, C. T. 2011. Misspent youth: does catching immature fish affect fisheries sustainability? - ICES Journal of Marine Science, 68: 1525-1534.

Wallace, R.K. and Fletcher, K.M. 2001. Understanding Fisheries Management: A Manual for understanding the Federal Fisheries Management Process, Including Analysis of the 1996 Sustainable Fisheries Act. Second Edition. Auburn University and the University of Mississippi. 62 pp.

Zhang, C.I., Kim, S., Gunderson, D., Marasco, R., Lee, J.B., Park, H.W. and Lee, J.H. 2009. An ecosystem-based fisheries assessment approach for Korean fisheries. Fisheries Research 100: 26-41.