Length-Based Stock Assessment Of A Species Complex In Deepwater Demersal Fisheries Targeting Snappers In Indonesia Fishery Management Area WPP 715

DRAFT - NOT FOR DISTRIBUTION. TNC-IFCP Technical Paper

Peter J. Mous, Wawan B. IGede, Jos S. Pet

AUGUST 12, 2020

The Nature Conservancy Indonesia Fisheries Conservation Program

Ikat Plaza Building - Blok L Jalan By Pass Ngurah Rai No.505, Pemogan, Denpasar Selatan Denpasar 80221 Bali, Indonesia Ph. +62-361-244524

People and Nature Consulting International

Grahalia Tiying Gading 18 - Suite 2 Jalan Tukad Pancoran, Panjer, Denpasar Selatan Denpasar 80225 Bali, Indonesia

Table of contents

1	Inti	roduction	2
2	Ma	terials and methods for data collection, analysis and reporting	6
	2.1	Frame Survey	6
	2.2	Vessel Tracking and CODRS	6
	2.3	Data Quality Control	7
	2.4	Length-Frequency Distributions, CpUE, and Total Catch	7
	2.5	I-Fish Community	28
3	Fisl	ning grounds and traceability	32
4		gth-based assessments of Top 20 most abundant species in CODRS samples incluall years in WPP 715	ıd- 36
5	Dis	cussion and conclusions	79
6	\mathbf{Ref}	erences	86

1 Introduction

This report presents a length-based assessment of the multi-species deep slope fisheries targeting snappers, groupers, emperors and grunts at depths ranging from 50 to 500 meters, in fisheries management area (WPP) 715 in eastern Indonesia. WPP 715 covers mostly the Maluku and Seram Seas, and is surrounded by the Pacific Ocean to the North and the Arafura Sea and Banda Sea to the South. WPP 715 borders on WPP 716 and 717 in the North, and WPP 718 and 714 in the South (Figure 1.1). Most of the WPP 715 boundaries cut right through various fishing grounds with continuous habitat and with fishing fleets freely moving across those boundaries.

Drop line and mini long line vessels fish on both sides of WPP 715 boundaries sometimes even within a single fishing trip, but more often shifting between fishing grounds with the varying seasons and wind directions. Small scale fishing boats from the Banggai Islands for example, operate mini bottom long lines in WPP 715 on the North side of the Banggai and Sula Islands during the South Easterly monsoon winds from May through October, while fishing on the South side of these Islands in WPP 714 during the North West monsoon from December through March. They fish on both sides during the inter-monsoon months of April and November.

In terms of habitat and ecology of the target species, WPP 715 and surrounding fisheries management areas, at least for the fishing grounds directly across the boundaries, are very similar and completely connected. Fishing grounds for snappers, groupers and other target species in this region include mostly deep slopes along the many islands as well as seamounts, reefs, atolls and other structures which are characteristic for this area. Much of the habitat in WPP 715 is mostly suitable for deep drop line fishing along these structures, with some more substantial suitable long line fishing grounds mainly concentrated close to the shores of the Bird's Head of West Papua, in the South Eastern corner of the Raja Ampat islands.

Several fleets from various home ports in Indonesia contributed catch data to the current assessment of WPP 715 deep slope fisheries. This includes among others a medium scale drop line fishery operating out of Kema in North Sulawesi (inside WPP 715), a small scale mini long line fishery based in the Banggai and Sula Islands on the boundary of the Maluku and Banda Seas and medium scale drop line and long line fisheries operating out of Sorong in West Papua. In addition, data were used from fleets originating from outside the region whenever they were operating inside WPP 715. Fishing grounds for the small scale mini long line and drop line fleets are mostly concentrated near the home islands of these fleets, whereas medium scale vessels routinely make trips to locations up to 1,000 kilometres or more from their home port, to all corners of this region.

Typical medium scale drop line vessels originating from Kema operate at great distances from their home port throughout WPP 715 and all surrounding fisheries management areas. Kema-based vessels make up to about 10 trips a year, landing around 4 tons of mixed snapper, grouper and emperor for each trip or up to about 40 tons per vessel per year. Medium scale drop line and long line fishing boats from Sorong normally stay somewhat closer to home, inside the waters of Raja Ampat and make shorter and more frequent trips in general. The Indonesian deep demersal fisheries catches a large number of species, and stocks of 100 of the most common species are monitored on a continuous basis through a Crew Operated Data Recording System (CODRS). The current report presents the top 50 most abundant species of fish in CODRS samples (Tables 1.1 and 1.2) in WPP 715, and analyses length frequencies of the 50 most important species in the combined deep demersal catches in this fisheries management area. For a complete overview of the species composition with images of all 100 target species, please refer to the ID guide prepared for these fisheries¹. For further background on species life history characteristics, and data-poor length based assessment methods, as applied in this report, please refer to the assessment guide that was separately prepared for these fisheries².

Data in this report represent catches realized within WPP 715 boundaries by fishing boats from the above described fleets. Captured fish were photographed on measuring boards by fishing crew participating in our Crew Operated Data Recording System. Images were analysed by project staff to generate the species specific length frequency distributions of the catches which served as the input for our length based assessment. Fishing grounds were recorded with SPOT tracers placed on contracted vessels.

Figure 1.1: Fisheries Management Areas (*Wilayah Pengelolaan Perikanan* or WPP) in Indonesian marine waters.

¹http://72.14.187.103:8080/ifish/pub/TNC_FishID.pdf

²http://72.14.187.103:8080/ifish/pub/DeepSlopeSpeciesAssessmentTool.pdf

			Reported			Length	Converted	Plotted	
			Trade	W =	a L^{b}	Type	Trade	Trade	
			Limit			for a & b	Limit	Limit	Sample
Rank	$\#\mathrm{ID}$	Species	Weight (g)	a	b	TL-FL-SL	L(cm)	TL(cm)	Sizes
1	1	Aphareus rutilans	1000	0.015	2.961	FL	42.20	49.61	39921
2	9	Pristipomoides filamentosus	500	0.038	2.796	FL	29.70	33.27	37051
3	4	Etelis sp.	500	0.022	2.950	FL	30.16	32.84	31022
4	21	Lutjanus erythropterus	500		2.870	FL	31.79	31.79	28665
5	34	Paracaesio kusakarii	500		3.135	FL	30.96	34.80	24002
6	7	Pristipomoides multidens	500		2.944	FL	31.18	34.92	23732
7	6	Ételis coruscans	500	0.041	2.758	FL	30.28	37.85	21107
8	17	Lutjanus malabaricus	500	0.009	3.137	FL	33.11	33.11	19659
9	10	Pristipomoides sieboldii	300	0.022	2.942	FL	25.52	29.21	13136
10	22	Pinjalo lewisi	300	0.014	2.970	FL	28.42	29.64	12017
11	5	Etelis radiosus	1000	0.056	2.689	FL	38.05	43.15	11684
12	35	Paracaesio stonei	500	0.024	2.960	FL	28.78	32.35	10613
13	69	Wattsia mossambica	500	0.040	2.824	FL	28.21	29.34	8972
14	19	Lutjanus timorensis	500	0.009	3.137	FL	33.11	33.34	8794
15	85	Erythrocles schlegelii	1500	0.011	3.040	FL	48.55	53.60	6885
16	32	Paracaesio gonzalesi	300	0.020	3.050	FL	23.24	24.96	5509
17	84	Seriola rivoliana	2000	0.006	3.170	FL	54.23	60.03	4376
18	45	Epinephelus areolatus	300	0.011	3.048	FL	28.18	28.77	4276
19	8	Pristipomoides typus	500	0.014	2.916	TL	36.16	36.16	3911
20	15	Lutjanus argentimaculatus	500	0.034	2.792	FL	31.22	31.78	3017
21	80	Caranx sexfasciatus	2000	0.032	2.930	FL	43.43	49.51	2989
22	82	Elagatis bipinnulata	1000	0.013	2.920	FL	46.53	55.37	2823
23	75	Carangoides chrysophrys	1000	0.027	2.902	FL	37.68	42.12	2730
24	70	Gymnocranius grandoculis	500	0.032	2.885	FL	28.43	30.53	2495
25	81	Caranx tille	2000	0.032	2.930	FL	43.43	49.51	2461
26	33	Paracaesio xanthura	300	0.023	3.000	SL	23.64	27.39	2387
27	87	Dentex carpenteri	300	0.023	2.930	FL	25.42	27.66	2311
28	88	Glaucosoma buergeri	500	0.045	2.725	TL	30.40	30.40	2174
29	43	Epinephelus morrhua	300	0.061	2.624	FL	25.59	25.59	2097
30	64	Lethrinus laticaudis	300	0.020	2.986	FL	25.16	26.35	2049
31	77	Caranx bucculentus	2000	0.023	3.033	FL	42.51	49.83	2032
32	27	Lutjanus vitta	300		2.978	FL	26.72	27.64	1954
33	20	Lutjanus gibbus	500		3.091	FL	28.87	31.09	1953
34	54	Epinephelus stictus	300	0.027	3.000	SL	22.37	28.24	1810
35	2	Aprion virescens	1000		2.886	FL	40.49	45.90	1656
36	67	Lethrinus amboinensis	300	0.029		FL	25.49	28.06	1587
37	92	Cookeolus japonicus	300		3.000	TL	27.58	27.58	1572
38	41	Epinephelus latifasciatus	1500		3.088	TL	48.00	48.00	1484
39	23	Pinjalo pinjalo	300		2.970	FL	28.42	31.16	1390
40	72	Carangoides coeruleopinnatus	1000		2.902	FL	35.35	40.12	1360
41	51	Epinephelus chlorostigma	500		2.940	FL	34.62	34.62	1323
42	18	Lutjanus sebae	500		3.208	$_{\rm FL}$	29.97	31.26	1264
43	16	Lutjanus bohar	500		3.059	$_{\rm FL}$	29.70	31.31	1198
44	90	Diagramma pictum	500		2.988	FL	33.08	36.71	1188
45	66	Lethrinus olivaceus	300		2.851	FL	25.49	27.50	1156
46	42	Epinephelus radiatus	300		2.624	FL	25.59	25.59	1105
47	30	Lipocheilus carnolabrum	500		2.488	$_{\rm FL}$	26.13	28.32	1062
48	24	Lutjanus johnii	300		2.907	FL	27.28	28.49	1043
49	63	Lethrinus lentjan	300		2.986	$_{\rm FL}$	25.16	26.35	1038
50	28	Lutjanus boutton	300	0.034	3.000	FL	20.75	21.56	1026

Table 1.1: Length-weight relationships, trading limits and total sample sizes (including all years) for the 50 most abundant species in CODRS samples from deep water demersal fisheries in 715

Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
1	Aphareus rutilans	10222	8871	7541	10670	2617	0	0	0	0	39921
2	Pristipomoides filamentosus	11517	6447	7793	10073	1221	0	0	0	0	37051
3	Etelis sp.	5371	6248	9398	7942	2063	0	0	0	0	31022
4	Lutjanus erythropterus	4810	3573	10648	8017	1617	0	0	0	0	28665
5	Paracaesio kusakarii	4216	8197	6285	4353	951	0	0	0	0	24002
6	Pristipomoides multidens	5672	6595	5760	4813	892	0	0	0	0	23732
7	Ételis coruscans	3138	4812	5446	6209	1502	0	0	0	0	21107
8	Lutjanus malabaricus	4433	5647	3787	4738	1054	0	0	0	0	19659
9	Pristipomoides sieboldii	989	4323	4153	3383	288	0	0	0	0	13136
10	Pinjalo lewisi	2281	5019	2521	1865	331	0	0	0	0	12017
11	Etelis radiosus	1951	2383	2447	4027	876	0	0	0	0	11684
12	Paracaesio stonei	1640	3074	2761	2590	548	0	0	0	0	10613
13	Wattsia mossambica	2491	1727	2333	2273	148	0	0	0	0	8972
14	Lutjanus timorensis	3365	1969	1569	1686	205	0	0	0	0	8794
15	Erythrocles schlegelii	1152	1633	1885	1778	437	0	0	0	0	6885
16	Paracaesio gonzalesi	864	1482	1616	1257	290	0	0	0	0	5509
17	Seriola rivoliana	953	1238	1091	902	192	0	0	0	0	4376
18	Epinephelus areolatus	914	425	822	1846	269	0	0	0	0	4276
19	Pristipomoides typus	1238	815	864	771	223	0	0	0	0	3911
20	Lutjanus argentimaculatus	847	663	804	649	54	0	0	0	0	3017
21	Caranx sexfasciatus	539	807	882	593	168	0	0	0	0	2989
22	Elagatis bipinnulata	395	563	976	612	277	0	0	0	0	2823
$23^{}$	Carangoides chrysophrys	551	943	562	412	262	Ő	0	Õ	Ũ	2730
24^{-5}	Gymnocranius grandoculis	703	739	494	496	63	Ő	0	Õ	Ũ	2495
25	Caranx tille	392	421	514	604	530	Ő	0	Õ	Ũ	2461
26	Paracaesio xanthura	374	655	736	559	63	0	0	0	0	2387
$\overline{27}$	Dentex carpenteri	514	383	795	572	47	Ő	0	Õ	Ũ	2311
28	Glaucosoma buergeri	485	537	624	497	31	Ő	0	Õ	Ũ	2174
29	Epinephelus morrhua	674	474	421	459	69	Ő	0	Õ	Ũ	2097
30	Lethrinus laticaudis	254	832	451	344	168	0	0	0	0	2049
31	Caranx bucculentus	126	327	385	779	415	Õ	0	0	0	2032
32	Lutjanus vitta	38	23	343	1457	93	Õ	0	0	0	1954
33	Lutjanus gibbus	687	122	286	797	61	Õ	0	0	0	1953
34	Epinephelus stictus	373	330	539	568	0	Ő	0	0	0	1810
35	Aprion virescens	560	378	256	412	50	0	0	0	0	1656
36	Lethrinus amboinensis	554	281	$\frac{-36}{256}$	470	26	Õ	0	0	0	1587
37	Cookeolus japonicus	253	443	411	393	$\frac{-0}{72}$	Õ	0	0	0	1572
38	Epinephelus latifasciatus	26	360	645	451	2	0	0	0	0	1484
39	Pinjalo pinjalo	102	168	911	$161 \\ 165$	- 44	0	0	0	0	1390
40	Carangoides coeruleopinnatus	154	473	447	271	15	0	0	0	0	1360
41	Epinephelus chlorostigma	394	272	287	322	48	0	0	0	0	1323
42	Lutjanus sebae	286	393	266	$\frac{522}{272}$	47	0	0	0	0	1323 1264
43	Lutjanus bohar	419	229	182	325	43	0	0	0	0	1198
43 44	Diagramma pictum	44	192	473	$\frac{325}{386}$	43 93	0	0	0	0	1138
45	Lethrinus olivaceus	308	420	175	204	$\frac{33}{49}$	0	0	0	0	$1150 \\ 1156$
46	Epinephelus radiatus	204	$\frac{420}{251}$	311	$\frac{204}{307}$	32	0	0	0	0	$1100 \\ 1105$
40	Lipocheilus carnolabrum	182	231 230	275	306	$\frac{52}{69}$	0	0	0	0	$1000 \\ 1062$
48	Lutjanus johnii	$102 \\ 145$	$\frac{230}{134}$	$275 \\ 299$	417	48	0	0	0	0	1002 1043
48 49	Lethrinus lentjan	8	134 74	299 293	598	65	0	0	0	0	$1043 \\ 1038$
$\frac{49}{50}$	Lutjanus boutton	68	8	$\frac{295}{196}$	603	151	0	0	0	0	1038 1026
- 50	Dutjanus Doutton	00	0	190	000	101	0	0	0	0	1020

Table 1.2: Sample sizes over the period 2016 to 2024 for the 50 most abundant species in CODRS samples of deepwater demersal fisheries in WPP 715

2 Materials and methods for data collection, analysis and reporting

2.1 Frame Survey

A country-wide frame survey was implemented to obtain complete and detailed information on the deep demersal fishing fleet in Indonesia, using a combination of satellite image analysis and ground truthing visits to all locations where either satellite imagery or other forms of information indicated deep demersal fisheries activity. During the frame survey, data were collected on boat size, gear type, port of registration, licenses for specific FMAs, captain contacts and other details, for all fishing boats in the fleet. Following practices by fisheries managers in Indonesia, we distinguished 4 boat size categories including "nano" (<5 GT), "small" (5-< 10 GT), "medium" (10-30 GT), and "large" (>30 GT). We also distinguished 4 gear types used in these fisheries, including vertical drop lines, bottom set long lines, deep water gillnets and traps. A 5th category of gear classification was needed to record operations using "mixed gear" when 2 or more of the gear types were used on the same trip and catches were not separated.

Frame survey data are continuously updated to keep records of the complete and currently active fishing fleet in the deep demersal fisheries. Fleet information is summarized by registration port and home district (Table 2.14), while actual fishing grounds are determined by placing SPOT Trace units on all fishing boats participating in the program. By late 2019, most (over 80%) of the Indonesian coastline had been surveyed and a majority of the fleet was on record. The total fleet in each WPP is a dynamic number, as boats are leaving and being added to the local fleet all the time, and therefore the fleet survey data need to be updated continuously.

2.2 Vessel Tracking and CODRS

Vessel movement and fishing activity as recorded with SPOT data generates the information on fleet dynamics. When in motion, SPOT Trace units automatically report an hourly location of each fishing boat in the program, and when at rest for more than 24 hours, they relay daily status reports. Data on species and size distributions of catches, as needed for accurate length based stock assessments, are collected via Crew Operated Data Recording Systems or CODRS. This catch data is georeferenced as the CODRS works in tandem with the SPOT Trace vessel tracking system. Captains were recruited for the CODRS program from across the full range of boat size and gear type categories.

The CODRS approach involves fishers taking photographs of the fish in the catch, displayed on measuring boards, while the SPOT tracking system records the positions. Data recording for each CODRS fishing trip begins when the boat leaves port with the GPS recording the vessel tracks while it is steaming out. After reaching the fishing grounds, fishing will start, changing the track of recorded positions into a pattern that shows fishing instead of steaming. During the fishing activity, fish is collected on the deck or in chiller boxes on deck. The captain or crew will then take pictures of the fish, positioned over measuring boards (Figure 2.1), before moving the fish from the deck or from the chiller to the hold (to be stored on ice) or to the freezer. The process is slightly different on some of the "nano" boats (around 1 GT), where some crew take pictures upon landing instead of at sea. In these situations, the timestamps of the photographs are still used as an indication of the fishing day, even though most fishing may have happened on the day before.

At the end of the trip, the storage chip from the camera is handed over for processing of the images by expert staff. Processing includes ID of the species and measurement of the length of the fish (Figure 2.2), double checking by a second expert, and data storage in the IFish data base. Sets of images from fishing trips with unacceptable low quality photographs were not further processed and not included in the dataset. Body weight at length could be calculated for all species using length-weight relationships to enable estimation of total catch weights as well as catch weights per species for individual fishing trips by CODRS vessels. Weight converted catch length frequencies of individual catches could therewith be verified against sales records of landings. These sales receipts or ledgers represent a fairy reliable estimate of the total weight of an individual catch (from a single trip, and including all species) that is independent from CODRS data.

2.3 Data Quality Control

With information from sales records we verified that individual catches were fully represented by CODRS images and we flagged catches when they were incomplete, judging from comparison with the weight converted catch size frequencies. When estimated weights from CODRS where above 90% of landed weights from receipts, they were considered complete and accepted for use in length-based analysis and calculations of CpUE. CpUE is calculated on a day by day basis, in kg/GT/day, using only those days from the trip when images were actually collected. Medium size and larger vessels (10 GT and larger) do trips of at least a week up to over a month. There may be some days on which weather or other conditions are such that no images are collected, but sufficient days with images, within those trips usually remain for daily CpUE estimates and to supply samples for length-based analysis. For boats of 10 GT and above, incomplete data sets with 30% to 90% coverage were still used for analysis, using only those days on which images were collected. For boats below 10 GT (doing day trips or trips of just a few days) only complete data sets are used for CpUE calculations. All data sets on catches with less than 30% coverage were rejected and were not used in any analysis.

2.4 Length-Frequency Distributions, CpUE, and Total Catch

By the end of 2019, more than 400 boats participated in the CODRS program (Figure 2.3) across all fishing grounds in Indonesia, with close to 40 boats enrolled in each WPP (Table 2.1). Recruitment of captains from the overall fleet into the CODRS program was not exactly proportional to composition of the fleet in terms of vessel size, gear type and the FMA where the boat normally operates. Actual fleet composition by boat size and gear type, and activity in terms of numbers of active fishing days per year for each category, are therefore used when CODRS data are used for CpUE and catch calculations. Species composition in the catch is also not exactly the same as species composition in the CODRS samples. Catch information by WPP and by fleet segment from CODRS samples needs to be combined with fleet composition and activity information to obtain accurate annual catch information and species composition for each segment of the fleet.

Converted weights from catch size frequencies on individual fishing days, in combination with activity data from onboard trackers were used to estimate catch per unit of effort (CpUE) by fleet segment (boat size * gear type), by FMA, by species, and over time. Plotted data show clear differences between CpUE values for different gear types and different boat size categories (Figure 2.4) and we therefore work with separated gear types and boat size categories to generate CpUE values for each distinct segment of the fleet (Table 2.2 and Table 2.3). Activity data from onboard trackers on more than 400 fishing boats were used to estimate the number of active fishing days per year for each segment of the fleet (Table 2.4) and the total (hull) Gross Tonnage in each fleet segment was combined with fleet activity to establish a measure of effort. With this information, CpUE could be precisely defined in kg per GT per active fishing day for each type of gear and each category of boat size in each FMA. Annual averages of CpUE by fleet segment were plotted for the top 7 species in each FMA (Figures 2.5 through 2.11), as indicators for stock health, and to compare with indicators from length-based analysis (i.e. Spawning Potential Ratio and percentage of immature fish in the catch).

Information on fleet activity, fleet size by gear type and boat size, and average size frequencies by species (per unit of effort) are used to estimate total catch. Fishing effort in terms of the average number of active fishing days per year for each gear type and boat size category (Table 2.4), was derived from SPOT data looking at movement patterns. Fleet size by gear type and boat size category (Table 2.5) was obtained from field surveys, where each vessel was recorded in a data base with estimated GT. Average size frequency distributions by fleet segment and species for each FMA, in combination with the information on effort by fleet segment, were thus used to estimate CATCH LFD (over the entire fleet) from average CODRS LFD by fleet segment. Only annual sample sizes larger than 200 fish per species and 50 fish per fleet segment were used for further calculations. Numbers per size class for each species in the catch were multiplied with weights per size class from length-weight relationships, to calculate catches by fleet segment (Table 2.7), species distribution in the total catch (Table 2.8), as well as catch by species for each gear type separately (Tables 2.9 through 2.13).

As the CODRS program is still in development, some parts for the fleet ("fleet segments", a combination of WPP, gear type, and boat size category) are not yet represented. For those missing fleet segments, we applied the following approach to estimate annual catch. First, within each WPP, we estimated the total catch and the total effort for all fleet segments where we had representation by CODRS. We expressed annual effort as "tonnage-days", ie, the GT of each vessel times the annual number of fishing days. Then, we calculated the average catch-per-unit-effort, over all fleet segments that have CODRS representation within each WPP (in metric tons per tonnage-day). This resulted in one catch-per-unit-effort estimate for each WPP (CPUE-estimate-per-WPP). Then, we calculated the effort, in tonnage-days, for the fleet segments where we did not have CODRS representation, and we multiplied this effort with CPUE-estimate-per-WPP to get the estimated total annual catch for that fleet segment. This means that, within each WPP, fleet segments that do not have CODRS representation all have the same CPUE estimate-per-WPP, but their total catch estimates vary because effort between those fleet segments vary. We applied this approach for total catch as well as total catch by species.

Trends in CpUE by species and by fleet segment (Figures 2.5 through 2.11) can be used as indicator for year-on-year changes in status of the stocks, for as far as time series are available within each fleet segment. Note, however, that these time series sometimes are incomplete or interrupted. This is due to variations in the presence of fleet segments between years in each WPP, and sometimes the CODRS vessels representing a fleet segment may disappear from one WPP and show up in another WPP. This may happen due to problems with processing permits at local authorities, but also due to the emerging differences in efficiencies between gear types and boat size categories, as well as due to perceptions on opportunities in other WPPs.

Figure 2.1: Fishing crew preparing fish on a measuring board.

Figure 2.2: Fish photographed by fishing crew on board as part of CODRS.

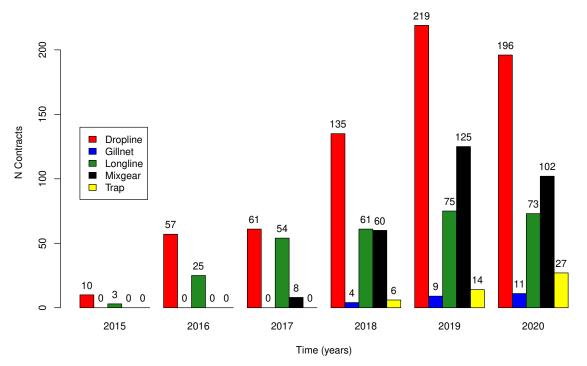


Figure 2.3: Number of CODRS contractors by gear type actively fishing in Indonesian waters.

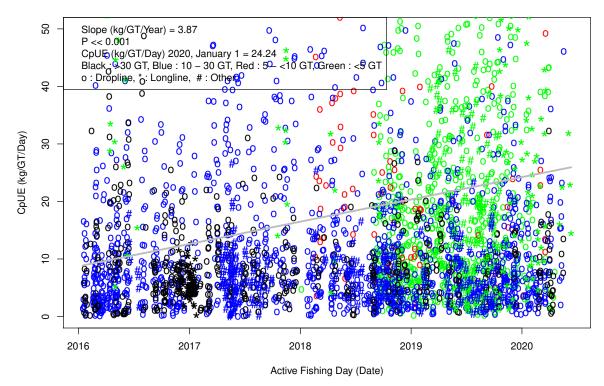


Figure 2.4: Catch per Unit of Effort in WPP 715.

Ν	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano	11	NA	NA	NA	4	15
Small	2	0	NA	0	NA	2
Medium	9	0	NA	0	0	9
Large	2	0	NA	NA	NA	2
Total	24	0	0	0	4	28

Table 2.1: Number of CODRS deployed by gear type and boat size category in WPP 715

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.2: CpUE by fishing gear and boat size category in WPP 715 for the most recent 365 days

kg/GT/Day	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano	57.74	NA	NA	NA	23.85
Small	21.01	33.05	NA	33.05	NA
Medium	15.22	33.05	NA	33.05	6.52
Large	12.28	33.05	NA	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.3: Number of CODRS observations that contribute to CpUE value in WPP 715 for the most recent 365 days

Ν	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano	237	85	NA	NA	39
Small	14	727	NA	727	NA
Medium	271	727	NA	727	18
Large	63	727	NA	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.4: Average active-fishing days per year by fishing gear and boat size category in all WPP

Days / Year	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano Dedicated	201	235	224	194	265
Nano Seasonal	100	118	112	97	133
Small Dedicated	213	258	247	277	241
Small Seasonal	107	129	124	139	121
Medium Dedicated	204	213	258	219	202
Medium Seasonal	102	107	129	110	101
Large Dedicated	166	237	151	185	185
Large Seasonal	83	119	75	92	92

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.5: Current number of boats in the fleet by fishing gear and boat size category in WPP 715

Number of Boat	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	537	0	0	0	9	546
Nano Seasonal	373	0	0	0	54	427
Small Dedicated	4	2	0	2	0	8
Small Seasonal	0	0	0	0	0	0
Medium Dedicated	25	10	0	8	2	45
Medium Seasonal	0	0	0	1	0	1
Large Dedicated	8	2	0	0	0	10
Large Seasonal	0	0	0	0	0	0
Total	947	14	0	11	65	1037

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Total GT	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	626	0	0	0	11	637
Nano Seasonal	196	0	0	0	44	240
Small Dedicated	26	19	0	18	0	64
Small Seasonal	0	0	0	0	0	0
Medium Dedicated	587	164	0	112	26	890
Medium Seasonal	0	0	0	24	0	24
Large Dedicated	339	61	0	0	0	400
Large Seasonal	0	0	0	0	0	0
Total	1775	244	0	154	81	2254

Table 2.6: Current total gross tonnage of all boats in the fleet by fishing gearand boat size category in WPP 715

Table 2.7: Total catch in metric tons per year by fishing gear and boat size category in WPP 715 for the most recent 365 days

Total Catch	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	7266	0	0	0	67	7333
Nano Seasonal	1133	0	0	0	139	1272
Small Dedicated	118	162	0	167	0	447
Small Seasonal	0	0	0	0	0	0
Medium Dedicated	1823	1154	0	813	34	3825
Medium Seasonal	0	0	0	87	0	87
Large Dedicated	691	478	0	0	0	1169
Large Seasonal	0	0	0	0	0	0
Total	11031	1793	0	1067	241	14131

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.8: Top 20 species by volume in deepwater demersal fisheries with % immature fish in the catch in WPP 715 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
Species	MT	%	% Weight	% Number	% Weight	Immature
Aphareus rutilans	5760	41	41	33	14	High
Pristipomoides filamentosus	1034	7	48	$\frac{55}{75}$	44	High
Etelis sp.	1094 1024	7	55	61	38	High
Etelis coruscans	1024 707	5	60	78	56	High
Pristipomoides multidens	641	5	65	36	12	High
Etelis radiosus	554	4	69	50 68	41	High
Caranx sexfasciatus	$504 \\ 505$	4	09 72	5	1	Low
0 000 00000 0 0000 0 000	505 414	4 3	72 75	5 10	4	Med
Lutjanus erythropterus Paracaesio kusakarij	414 404	-			-	Med
i aracacoro mabanam	101	3	78	28	11	mea
Aprion virescens	277	2	80	53	23	High
Seriola rivoliana	275	2	82	33	13	High
Lutjanus malabaricus	235	2	84	67	34	High
Erythrocles schlegelii	171	1	85	1	0	Low
Paracaesio stonei	150	1	86	13	4	Med
Gymnocranius grandoculis	106	1	87	10	3	Med
Elagatis bipinnulata	103	1	87	0	0	Low
Caranx tille	99	1	88	0	0	Low
Pristipomoides flavipinnis	98	1	89	4	1	Low
Paracaesio gonzalesi	89	1	89	5	2	Low
Lutjanus gibbus	88	1	90	32	18	High
Total Top 20 Species	12733	90	90	43	21	High
Total Top 100 Species	14131	100	100	40	20	High

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	\mathbf{MT}	%	% Weight	% Number	% Weight	Immature
Aphareus rutilans	4588	42	42	33	14	High
Pristipomoides filamentosus	824	7	49	75	44	High
Etelis sp.	816	7	56	61	38	High
Etelis coruscans	564	5	62	78	56	High
Pristipomoides multidens	483	4	66	36	12	High
Etelis radiosus	441	4	70	68	41	High
Caranx sexfasciatus	367	3	73	5	1	Low
Paracaesio kusakarii	322	3	76	28	11	Med
Lutjanus erythropterus	311	3	79	10	4	Med
Seriola rivoliana	218	2	81	33	13	High
Aprion virescens	218	2	83	53	23	High
Lutjanus malabaricus	175	2	85	67	34	High
Erythrocles schlegelii	136	1	86	1	0	Low
Paracaesio stonei	120	1	87	13	4	Med
Gymnocranius grandoculis	84	1	88	10	3	Med
Pristipomoides flavipinnis	78	1	88	4	1	Low
Caranx tille	78	1	89	0	0	Low
Elagatis bipinnulata	75	1	90	0	0	Low
Paracaesio gonzalesi	71	1	90	5	2	Low
Lutjanus gibbus	67	1	91	32	18	High
Total Top 20 Species	10035	91	91	43	21	High
Total Top 100 Species	11031	100	100	40	20	High

Table 2.9: Top 20 species by volume in Dropline fisheries with $\%$ immature fish
in the catch in WPP 715 for the most recent 365 days.

Table 2.10: Top 20 species by volume in Longline fisheries with % immature fish in the catch in WPP 715 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
Aphareus rutilans	731	41	41	NA	NA	
Pristipomoides filamentosus	131	7	48	NA	NA	
Etelis sp.	130	7	55	NA	NA	
Etelis coruscans	90	5	60	NA	NA	
Pristipomoides multidens	81	5	65	NA	NA	
Etelis radiosus	70	4	69	NA	NA	
Caranx sexfasciatus	64	4	72	NA	NA	
Lutjanus erythropterus	53	3	75	NA	NA	
Paracaesio kusakarii	51	3	78	NA	NA	
Aprion virescens	35	2	80	NA	NA	
Seriola rivoliana	35	2	82	NA	NA	
Lutjanus malabaricus	30	2	84	NA	NA	
Erythrocles schlegelii	22	1	85	NA	NA	
Paracaesio stonei	19	1	86	NA	NA	
Gymnocranius grandoculis	13	1	87	NA	NA	
Elagatis bipinnulata	13	1	87	NA	NA	
Caranx tille	13	1	88	NA	NA	
Pristipomoides flavipinnis	12	1	89	NA	NA	
Paracaesio gonzalesi	11	1	89	NA	NA	
Lutjanus gibbus	11	1	90	NA	NA	
Total Top 20 Species	1616	90	90	NA	NA	NA
Total Top 100 Species	1793	100	100	NA	NA	NA

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
*	MT	%	% Weight	% Number	% Weight	Immature
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
Total Top 20 Species	0	0	0	NA	NA	NA
Total Top 100 Species	0	0	0	NA	NA	NA

Table 2.11: Top 20 species by volume in Gillnet fisheries with % immature fish in the catch in WPP 715 for the most recent 365 days.

Table 2.12: Top 20 species by volume in Trap fisheries with % immature fish in the catch in WPP 715 for the most recent 365 days.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	\mathbf{MT}	%	% Weight	% Number	% Weight	Immature
Aphareus rutilans	435	41	41	NA	NA	
Pristipomoides filamentosus	78	7	48	NA	NA	
Etelis sp.	77	7	55	NA	NA	
Etelis coruscans	53	5	60	NA	NA	
Pristipomoides multidens	48	5	65	NA	NA	
Etelis radiosus	42	4	69	NA	NA	
Caranx sexfasciatus	38	4	72	NA	NA	
Lutjanus erythropterus	31	3	75	NA	NA	
Paracaesio kusakarii	30	3	78	NA	NA	
Aprion virescens	21	2	80	NA	NA	
Seriola rivoliana	21	2	82	NA	NA	
Lutjanus malabaricus	18	2	84	NA	NA	
Erythrocles schlegelii	13	1	85	NA	NA	
Paracaesio stonei	11	1	86	NA	NA	
Gymnocranius grandoculis	8	1	87	NA	NA	
Elagatis bipinnulata	8	1	87	NA	NA	
Caranx tille	7	1	88	NA	NA	
Pristipomoides flavipinnis	7	1	89	NA	NA	
Paracaesio gonzalesi	7	1	89	NA	NA	
Lutjanus gibbus	7	1	90	NA	NA	
Total Top 20 Species	961	90	90	NA	NA	NA
Total Top 100 Species	1067	100	100	NA	NA	NA

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	\mathbf{MT}	%	% Weight	% Number	% Weight	Immature
Caranx sexfasciatus	36	15	15	NA	NA	
Pristipomoides multidens	29	12	27	NA	NA	
Caranx ignobilis	27	11	38	NA	NA	
Lutjanus erythropterus	19	8	46	13	7	Med
Lutjanus malabaricus	13	5	52	68	40	High
Lutjanus argentimaculatus	12	5	56	NA	NA	
Lutjanus bohar	10	4	61	NA	NA	
Sphyraena barracuda	9	4	65	NA	NA	
Lethrinus olivaceus	8	3	68	NA	NA	
Variola albimarginata	7	3	71	NA	NA	
Elagatis bipinnulata	7	3	74	NA	NA	
Lethrinus lentjan	6	3	76	NA	NA	
Aphareus rutilans	6	2	79	NA	NA	
Pristipomoides typus	5	2	81	NA	NA	
Paracaesio xanthura	4	2	83	NA	NA	
Lutjanus boutton	4	2	84	NA	NA	
Epinephelus areolatus	4	2	86	NA	NA	
Diagramma pictum	4	2	88	NA	NA	
Lutjanus gibbus	4	1	89	NA	NA	
Aprion virescens	3	1	91	NA	NA	
Total Top 20 Species	218	91	91	25	16	Medium
Total Top 100 Species	241	100	100	25	16	Medium

Table 2.13: Top 20 species by volume in Mixgears fisheries with $\%$ immature fish
in the catch in WPP 715 for the most recent 365 days.

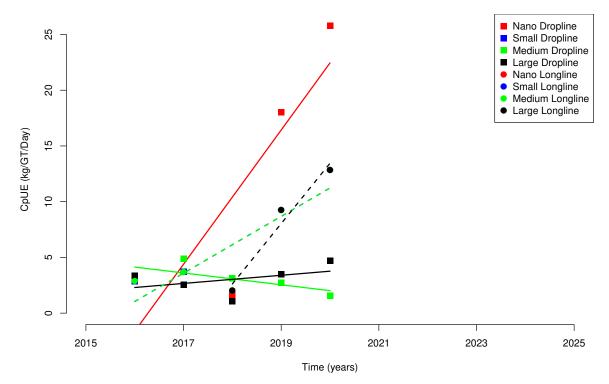


Figure 2.5: Catch per Unit of Effort per calendar year for Aphareus rutilans in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

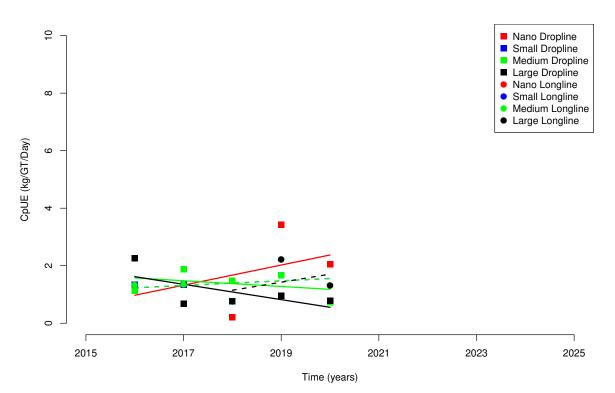


Figure 2.6: Catch per Unit of Effort per calendar year for Pristipomoides filamentosus in WPP 715 for Dropline and Longline catches by fleet segment.Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

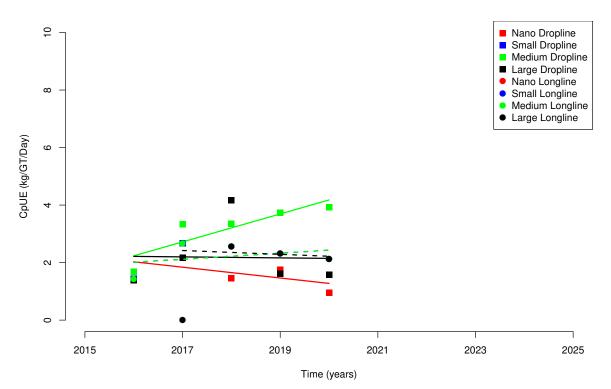


Figure 2.7: Catch per Unit of Effort per calendar year for Etelis sp. in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

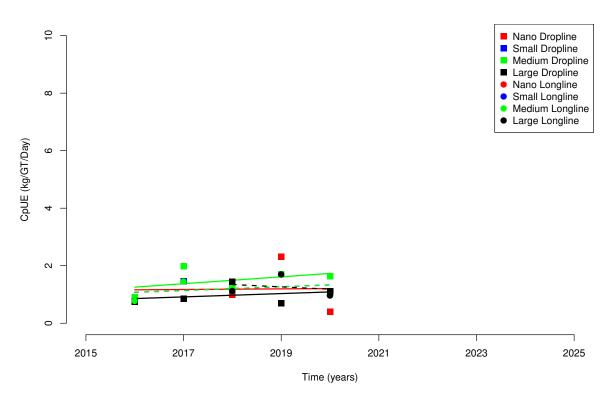


Figure 2.8: Catch per Unit of Effort per calendar year for Etelis coruscans in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

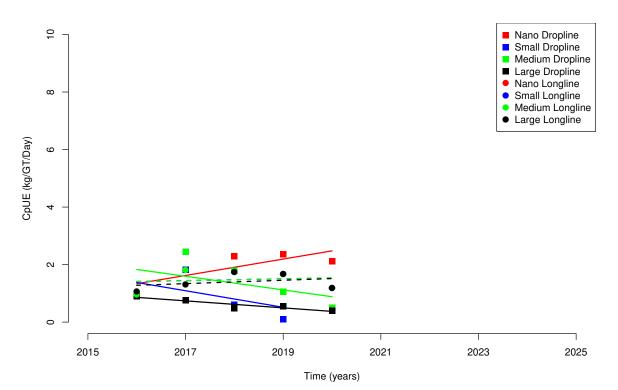


Figure 2.9: Catch per Unit of Effort per calendar year for Pristipomoides multidens in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

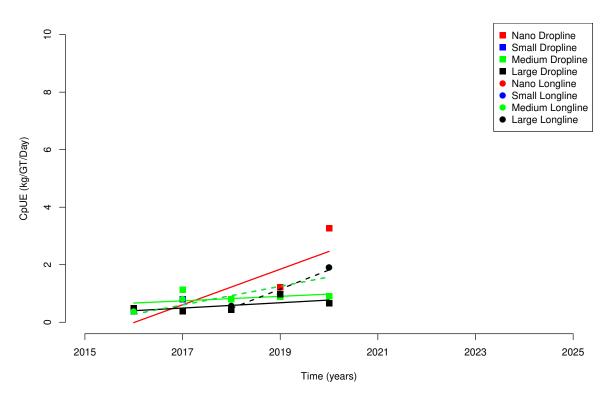


Figure 2.10: Catch per Unit of Effort per calendar year for Etelis radiosus in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

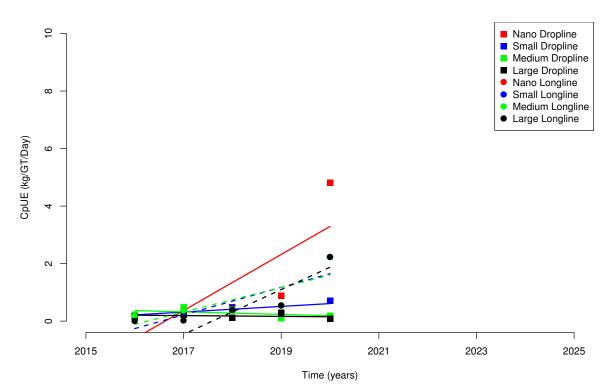


Figure 2.11: Catch per Unit of Effort per calendar year for Caranx sexfasciatus in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
1	571	Desa Sungai Kuruk III	Aceh Tamiang	Nano	Mixgears	2	6
2	571	Desa Sungai Kuruk III	Aceh Tamiang	Small	Mixgears	6	34
3	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Dropline	1	2
4	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Trap	5	10
5	571	PP. Pasiran	Kota Sabang	Nano	Dropline	3	4
6	571	Pangkalan Susu	Langkat	Nano	Mixgears	38	114
7	571	Pelabuhan Ujung Kampung	Langkat	Medium	Mixgears	3	39
8	571	Pelabuhan Ujung Kampung	Langkat	Nano	Mixgears	5	23
9	571	Pelabuhan Ujung Kampung	Langkat	Nano	Trap	1	4
10	571	Pelabuhan Ujung Kampung	Langkat	Small	Mixgears	2	15
11	571	PPI. Pangkalan Brandan	Langkat	Medium	Mixgears	1	10
12	571	PPI. Pangkalan Brandan	Langkat	Nano	Mixgears	33	135
13	571	PPI. Pangkalan Brandan	Langkat	Small	Mixgears	7	42
14	571	PP. Ujung Blang	Lhokseumawe	Nano	Longline	7	11
15	571	Belawan	Medan	Small	Mixgears	10	50
16	571	Teluk Mengkudu	Serdang Bedagai	Small	Longline	5	48
17	571	TPI. Sialang Buah	Serdang Bedagai	Small	Longline	5	48
18	572	Kuala Bubon	Aceh Barat	Medium	Mixgears	2	21
9	572	Kuala Bubon	Aceh Barat	Small	Mixgears	2	14
20	572	PP. Meulaboh	Aceh Barat	Nano	Mixgears	5	17
21	572	PP. Ujoeng Baroh	Aceh Barat	Medium	Mixgears	1	10
22	572	PP. Ujoeng Baroh	Aceh Barat	Nano	Mixgears	1	3
23	572	PP. Ujong Baroeh	Aceh Barat	Nano	Mixgears	3	10
24	572	PP. Ujong Baroeh	Aceh Barat	Small	Dropline	2	13
25	572	PP. Ujong Baroeh	Aceh Barat	Small	Mixgears	18	107
26	572	Susoh	Aceh Barat Daya	Medium	Dropline	1	11
27	572	Susoh	Aceh Barat Daya	Small	Dropline	2	12
28	572	Desa Lampuyang	Aceh Besar	Nano	Dropline	15^{-}	22
9	572	PP. Lhok Bengkuang	Aceh Selatan	Nano	Mixgears	10	36
30 80	572	PP. Lhok Bengkuang	Aceh Selatan	Small	Mixgears	37	236
51	572	PP. Lampulo	Banda Aceh	Nano	Dropline	1	4
32	572	PP. Lampulo	Banda Aceh	Nano	Longline	2	6
33	572	PP. Lampulo	Banda Aceh	Small	Dropline	8	49
34	572	PP. Lampulo	Banda Aceh	Small	Longline	1	45 6
94 85	$572 \\ 572$	PPS Lampulo	Banda Aceh	Small	Dropline	9	63
35 86	572 572	PP. Pulau Baai	Bengkulu	Large	Trap	9 1	31
30 37	572 572	PP. Pulau Baai	Bengkulu	Medium	Dropline	2	34
88							
88 39	$572 \\ 572$	PP. Pulau Baai PP. Pulau Baai	Bengkulu Bengkulu	Medium Medium	Gillnet	$7 \\ 5$	153 61
-			Bengkulu Bengkulu		Mixgears		
40 1 1	572 572	PP. Pulau Baai PP. Pulau Baai	Bengkulu Bengkulu	Nano	Dropline Mivropro	5	21
1	572 572	PP. Pulau Baai	Bengkulu Bengkulu	Nano	Mixgears	2	8
2	572 572	PP. Pulau Baai	Bengkulu Bengkulu	Small	Dropline Cillmat	23	130
3	572	PP. Pulau Baai	Bengkulu Banalanka	Small	Gillnet	1	6
4	572	PP. Pulau Baai	Bengkulu	Small	Mixgears	2	12
15	572	PP. Muara Angke	Jakarta Karta	Large	Dropline	1	158
6	572	PP. Sikakap	Kepulauan Mentawai	Nano	Dropline	1	3
17	572	PP. Tuapejat	Kepulauan Mentawai	Medium	Dropline	2	24
18	572	PP. Tuapejat	Kepulauan Mentawai	Small	Dropline	2	18
19	572	PP. Muara Piluk Bakauheni	Lampung	Nano	Longline	14	39
0	572	PP. Muara Piluk Bakauheni	Lampung	Small	Longline	1	5
51	572	Botolakha	Nias	Small	Dropline	25	197
52	572	Helera	Nias	Nano	Mixgears	13	21
3	572	Helera	Nias	Small	Mixgears	2	11
64	572	Teluk Dalam	Nias	Nano	Dropline	5	18
55	572	Muara Padang	Padang	Medium	Dropline	1	12
66	572	Muara Padang	Padang	Medium	Longline	1	11
57	572	Muara Padang	Padang	Nano	Dropline	2	7
58	572	Muara Padang	Padang	Small	Dropline	12	70

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
59	572	PP. Bungus	Padang	Medium	Mixgears	1	15
60	572	PP. Bungus	Padang	Small	Longline	1	8
51	572	PP. Muaro	Padang	Medium	Dropline	2	23
2	572	PP. Muaro	Padang	Medium	Longline	1	11
53	572	PP. Muaro	Padang	Medium	Mixgears	2	24
54	572	PP. Muaro	Padang	Small	Dropline	1	5
55	572	PP. Muaro	Padang	Small	Longline	2	19
66	572	PP. Muaro	Padang	Small	Mixgears	4	29
57	572	PP. Labuan	Pandeglang	Small	Dropline	29	152
68	572	PP. Sibolga	Sibolga	Medium	Trap	4	64
59	572	PP. Sibolga	Sibolga	Nano	Dropline	4	14
0	572	PP. Sibolga	Sibolga	Nano	Trap	12	47
'1	572	PP. Sibolga	Sibolga	Small	Dropline	3	18
2	572	PP. Sibolga	Sibolga	Small	Trap	6	35
'3	573	Desa Alor Kecil	Alor	Nano	Dropline	25	17
74	573	Kedonganan	Badung	Nano	Mixgears	30	56
75	573	PP. Pancer	Banyuwangi	Nano	Dropline	300	306
76	573	Atapupu	Belu	Nano	Dropline	5	6
7	573	PP. Rompo	Bima	Nano	Dropline	50	50
8	573	PP. Sape	Bima	Nano	Dropline	103	170
'9	573	PP. Sape	Bima	Nano	Mixgears	109	267
30	573	Jetis	Cilacap	Nano	Longline	30	26
31	573	Pelabuhan Benoa	Denpasar	Medium	Dropline	12	268
32	573	Pelabuhan Benoa	Denpasar	Medium	Longline	1	27
3	573	PP. Tenau Kupang	Denpasar	Medium	Dropline	1	22
4	573	PP. Soroadu	Dompu	Nano	Dropline	27	15
5	573	PP. Soroadu	Dompu	Nano	Longline	11	6
6	573	Pengambengan	Jembrana	Nano	Longline	20	40
37	573	Yeh Kuning	Jembrana	Nano	Longline	150	126
88	573	Pelabuhan Benoa	Kupang	Medium	Dropline	1	27
<u>9</u>	573	PP. Mayangan	Kupang	Medium	Longline	1	29
0	573	PP. Oeba Kupang	Kupang	Nano	Dropline	5	5
1	573	PP. Tenau Kupang	Kupang	Medium	Dropline	21	365
92	573	PP. Tenau Kupang	Kupang	Medium	Longline	2	48
)3	573	PP. Tenau Kupang	Kupang	Nano	Dropline	6	22
4	573	PP. Tenau Kupang	Kupang	Small	Dropline	22	174
95	573	Tablolong Kupang	Kupang	Nano	Dropline	11	22
6	573	Desa waijarang	Lembata	Nano	Dropline	20	14
7	573	Tapolango	Lembata	Nano	Mixgears	20	14
8	573	PP. Tanjung Luar	Lombok Timur	Nano	Dropline	30	30
9	573	PP. Tanjung Luar	Lombok Timur	Nano	Longline	50	70
.00	573	PP. Tanjung Luar	Lombok Timur	Small	Dropline	1	9
.01	573	Pulau Maringkik	Lombok Timur	Small	Dropline	11	93
02	573	TPI Kampung Ujung	Manggarai Barat	Nano	Dropline	60	74
.03	573	PP Cikidang	Pangandaran	Small	Gillnet	8	50
.04	573	PP. Cikidang	Pangandaran	Nano	Gillnet	3	13
05	573	Batutua Rote	Rote	Nano	Dropline	8	8
06	573	Oesely Rote	Rote	Nano	Dropline	1	1
07	573	Papela Darat	Rote	Nano	Dropline	9	9
08	573	Papela Tanjung	Rote	Nano	Dropline	9	9
09	573	Rote	Rote	Nano	Dropline	4	7
10	573	Sukabumi	Sukabumi	Nano	Dropline	50	50
11	573	Wini	Timor Tengah Utara	Nano	Dropline	7	12
12	711	PP Baturusa Pangkal Batam	Bangka	Small	Trap	4	24
13	711	PP. Sungailiat	Bangka	$\operatorname{Small}_{\widetilde{a}}$	Dropline	1	6
14	711	PP. Sungailiat	Bangka	Small	Gillnet	11	67
15	711	PP. Sungailiat	Bangka	Small	Mixgears	2	12
116	711	PP. Sungailiat	Bangka	Small	Trap	1	6

Row	WPP	Registration Port	Home District	Boat Size		N	Total GT
117	711	Batam	Batam	Large	Trap	1	34
118	711	Batam	Batam	Medium	Trap	2	56
119	711	Batam	Batam	Small	Dropline	2	12
120	711	Batam	Batam	Small	Trap	2	13
121	711	PP. Tanjung Pandan	Belitung	Medium	Mixgears	2	36
122	711	PP. Tanjung Pandan	Belitung	Medium	Trap	3	63
123	711	PP. Tanjung Pandan	Belitung	Nano	Dropline	77	157
124	711	PP. Tanjung Pandan	Belitung	Nano	Mixgears	75	225
125	711	PP. Tanjung Pandan	Belitung	Nano	Trap	20	71
126	711	PP. Tanjung Pandan	Belitung	Small	Dropline	5	27
127	711	PP. Tanjung Pandan	Belitung	Small	Gillnet	3	16
128	711	PP. Tanjung Pandan	Belitung	Small	Longline	2	11
129	711	PP. Tanjung Pandan	Belitung	Small	Mixgears	10	65
130	711	PP. Tanjung Pandan	Belitung	Small	Trap	46	248
131	711	PP. Manggar Belitung Timur	Belitung Timur	Medium	Dropline M	2	21
132	711	PP. Manggar Belitung Timur	Belitung Timur	Medium	Mixgears	1	20
133	711	PP. Manggar Belitung Timur	Belitung Timur	Nano	Dropline	3	11
134	711	PP. Manggar Belitung Timur	Belitung Timur	Nano	Mixgears	1	4
135	711	PP. Manggar Belitung Timur	Belitung Timur	Small	Dropline	4	22
136	711	PP. Manggar Belitung Timur	Belitung Timur Bintan	Small	Mixgears	87	481
137	711	PP. Kijang		Large	Longline	2	69
138	711	PP. Kijang	Bintan	Medium	Dropline	3	47
139	711	PP. Kijang	Bintan	Medium	Longline	4	78 4700
140	711	PP. Kijang	Bintan	Medium	Trap	245	4709
141	711	PP. Kijang	Bintan	Nano	Mixgears	2	8
142	711	PP. Kijang	Bintan	Nano Small	Trap	7	29 66
$\begin{array}{c} 143 \\ 144 \end{array}$	$711 \\ 711$	PP. Kijang	Bintan Bintan	Small	Dropline Longline	10	$\frac{66}{36}$
		PP. Kijang	Bintan	Small	Longline	$\frac{5}{9}$	$\frac{50}{58}$
$145 \\ 146$	$711 \\ 711$	PP. Kijang	Bintan	Small	Mixgears	$9 \\ 210$	1425
$140 \\ 147$	711	PP. Kijang Moro	Karimun	Small	Trap Trap		$1420 \\ 7$
147	711	Tanjung Balai Karimun	Karimun	Medium	Longline	$\frac{1}{7}$	163
$140 \\ 149$	711	PP. Tarempa	Kepulauan Anambas	Nano	Dropline	202	105 298
$140 \\ 150$	711	PP. Tarempa	Kepulauan Anambas	Nano	Trap	19	230 24
$150 \\ 151$	711	PP. Tarempa	Kepulauan Anambas	Small	Dropline	11	63
$151 \\ 152$	711	PPI Ladan	Kepulauan Anambas	Nano	Dropline	73	182
153	711	PPI Ladan	Kepulauan Anambas	Small	Dropline	1	5
154	711	Bunguran	Natuna	Nano	Dropline	22	79
155	711	Dermaga Kayu Sededap	Natuna	Nano	Dropline	1	5
156	711	Lagong	Natuna	Nano	Dropline	23	69
157	711	Natuna	Natuna	Large	Longline	3	94
158	711	Natuna	Natuna	Medium	Longline	1	28
159	711	Pelabuhan Midai	Natuna	Medium	Mixgears	4	48
160	711	Pelabuhan Midai	Natuna	Small	Mixgears	1	6
161	711	Pelabuhan Pasir Putih	Natuna	Nano	Dropline	1	2
162	711	Pelabuhan Pering	Natuna	Medium	Dropline	2	30
163	711	Pelabuhan Pering	Natuna	Nano	Dropline	21	78
164	711	Pelabuhan Pering	Natuna	Small	Dropline	1	8
165	711	Pelabuhan Sabang Barat-Midai	Natuna	Medium	Mixgears	1	12
166	711	Pelabuhan Sabang Barat-Midai	Natuna	Small	Mixgears	2	12
167	711	Pelabuhan Tanjung	Natuna	Nano	Dropline	30	59
168	711	Pering	Natuna	Nano	Dropline	1	4
169	711	PP. Pering	Natuna	Small	Dropline	1	5
170	711	PP. Tarempa	Natuna	Medium	Longline	1	18
171	711	Pulau Tiga Natuna	Natuna	Small	Dropline	28	170
172	711	Sepempang	Natuna	Small	Dropline	<u>-</u> © 22	132
173	711	Subi-besar	Natuna	Nano	Dropline	23	69
110	1 1 1		natuna	Ivano	Dropine	20	09

175 711 Telak Baton Natua Nano Dropline 2 7 176 711 Pangkal Bakan Pangkal Pinang Nano Mixgears 3 12 177 711 Pangkal Bakan Pangkal Pinang Nano Mixgears 3 12 178 711 Pangkal Binang Small Gilnet 1 6 180 711 Pangkal Binang Small Mixgears 5 27 181 711 PE, Bajomulyo Pati Large Longline 2 20 184 711 PF, Kuala Mempawah Pontianak Medium Trap 2 67 185 712 PF, Tanjung Pandan Belitung Nano Trap 2 67 186 712 PF, Karangsong Indramayu Small Mixgears 8 32 190 712 Opara Japara Medium Mixgears 8 32 197 712 Opara Japara Medium Mixgears 8 32 197 712 Opara Small Mixgears 8 31 197 712 OpF. Karinun Jawa Jepara	Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
177711Pangkal BhahamPangkal PinangNanoMixgears312178711Pangkal BhahamPangkal PinangSmallGilmet14179711Pangkal BahamPangkal PinangSmallGilmet16180711Pangkal BahamPangkal PinangSmallMixgears527182711PP. BajomulyoPatiLargeLangline220184711PP. Kuala MempawahPontianakMediumTrap220184712PP. Tanjung PandanBelitungNanoNanoTrap27186712PP. KarangsongIndramayuSmallTrap1105188712PP. KarangsongIndramayuSmallMediumMixgears832190712JeparaJeparaJeparaMediumMixgears832191712JeparaJeparaMediumMixgears621197712PP. Karimun JawaJeparaMediumMixgears621197712PP. Karimun JawaJeparaMediumMixgears68491197712PP. Karimun JawaJeparaMediumMixgears832197712PP. Karimun JawaJeparaMediumMixgears832197712PP. BorondongLamonganMediumMixgears17 <td>175</td> <td>711</td> <td>Teluk Buton</td> <td>Natuna</td> <td>Nano</td> <td></td> <td>26</td> <td>78</td>	175	711	Teluk Buton	Natuna	Nano		26	78
178711Pangkal BalamPangkal PinangNanoTrap14187711Pangkal BalamPangkal PinangSmallMixgers527188711Pangkal BalamPangkal PinangSmallMixgers527183711PF. RajoundyoPatiLargeLongline2125183711PF. Kuala MempawahPontianakMeliumTrap319185712PF. Taujing PandanBelitungNanoTrap1263187712PF. Taujing PandanBelitungSmallLongline11165188712PF. KarangsongIndramayuMeliumMixgers832189712JeparaJeparaMeliumMixgers832190712JeparaJeparaMeliumMixgers832191712JeparaJeparaMeliumMixgers621195712PI. Karinun JawaJeparaSmallMixgers621195712PI. Karinun JawaJeparaSmallMixgers599196712PI. BrondongLamonganMeliumMixgers18314197712PI. BrondongLamonganMeliumMixgers18314197712PI. BrondongLamonganMeliumMixgers2114198712PI. BrondongLamong			0			-		
179711Pangkol BahamPangkol PinangSmallGillment16181711Pangkol BahamPangkol PinangSmallTrap1267182711PP: RajountlyoPatiLargeLongline2125183711PP: Ruala MempawahPontianakMadiumTrap220184711PP: Tanjung PandanBelitungNanoTrap267185712PP. Tanjung PandanBelitungSmallTrap1263186712PP. KarangsongIndramayuMediumLongline1116188712PP. KarangsongIndramayuSmallLongline116199712JeparaJeparaMediumMixgears832190712JeparaJeparaMediumMixgears62119712JaparaJeparaNanoMixgears599193712PP. Karimun JawaJeparaSmallMixgears599195712PP. BrondongLamonganMediumMixgears832196712Pulan ParangJeparaSmallTrap17197712PP. BrondongLamonganMediumMixgears234196712PP. BrondongLamonganMediumMixgears234197712PP. BrondongLamongan			0			0		
180711Pangkal BalamPangkal PinangSmallMisgoars527181711PP. BajomulyoPatiLargeLorgline2125183711PP. Kuala MompawahPontianakMcfiumTrap319184711PP. Kuala MompawahPontianakSmallTrap319185712PP. Tanjing PandanBeltungSmallTrap1263186712PP. Tanjing PandanBeltungSmallLongline11165187712PP. KarangsongIndramayuMcdiumLongline19188712PP. KarangsongIndramayuSmallMisgoars832190712JeparaJeparaMediumMisgoars16191712JeparaJeparaMediumMisgoars621193712PP. Karimun JawaJeparaMediumMisgoars6811194712PP. Karimun JawaJeparaSmallMisgoars832305195712PH. BrondongLamonganMediumMisgoars175712197712PP. BrondongLamonganMediumMisgoars18302200712PP. BrondongLamonganSmallDropline1116201712PP. BrondongLamonganMediumMisgears21<						·		
181 711 Pangkal Balam Pangkal Pinang Small Trap 12 671 82 711 PP. Rajumlyo Pati Large Longline 2 20 183 711 PP. Kuala Mempawah Pontianak Small Trap 2 20 184 711 PP. Tanjung Pandan Belitung Nano Trap 2 63 185 712 PP. Tanjung Pandan Belitung Small Trap 12 63 188 712 PP. Karangsong Indramayu Small Megium Mixgoars 8 32 190 712 Jepara Jepara Medium Mixgoars 6 21 191 712 PP. Karimun Jawa Jepara Medium Mixgoars 5 99 193 712 PP. Karimun Jawa Jepara Medium Mixgoars 5 99 195 712 PP. Karimun Jawa Jepara Small Trap			0	0 0				
182711PPE RajoundyoPatiLargeLorgine2125183711PPE Kuala MempawahPontianakMediumTrap319185712PPE Tanjung PandanBelitungNanoTrap27186712PPE Tanjung PandanBelitungSmallTrap1263187712PPE KarangsongIndramayuMediumLongline19188712PPE KarangsongIndramayuSmallLongline19189712JeparaJeparaMediumMixgears832190712JeparaJeparaMediumMixgears16191712PPE Karimun JawaJeparaMediumMixgears621194712PPE Karimun JawaJeparaSmallMixgears621195712PIE BrondongLamonganMediumMixgears832196712PIE BrondongLamonganMediumMixgears832200712PPE BrondongLamonganSmallTrap116201712PPE BrondongLamonganSmallMixgears214202712PPE BrondongLamonganSmallMixgears214201712PPE BrondongLamonganSmallMixgears2314201712PPE BrondongLamongan<			0	0 0		0		
183711PP. Kuala Mempawah PontianakPontianakMedium Trap220184711PP. Kanja Mempawah PontianakPontianakSmallTrap27186712PP. Tanjung PandanBelitungNanoTrap1263187712PP. KarangsongIndramayuMedium Mugears19187712PP. KarangsongIndramayuSmallLongine19187712JeparaJeparaNanoMixgears455198712JeparaJeparaMediumMixgears455193712JeparaJeparaMediumMixgears68491194712PP. Karimun JawaJeparaSmallMixgears68491195712Plaba ParangJeparaSmallMixgears68491195712Plaba ParangJeparaSmallMixgears832200712PP. BrondongLamonganMediumMixgears832201712PP. BrondongLamonganSmallDropline4832201712PP. BrondongLamonganSmallDropline16203712PP. BorondongLamonganMediumMixgears214203712PP. BorondongPatiLamonganSmallDropline116203712PP. Boron			0					
184711PP. Pr. Tanjung PandanPontianakSmallTrap319185712PP. Tanjung PandanBelitungNanoTrap1263186712PP. KarangsongIndramayuSmallIrap1263187712PP. KarangsongIndramayuSmallLongline11165188712PP. KarangsongIndramayuSmallLongline11165190712JeparaJeparaMediumMixgears832191712JeparaJeparaMediumMixgears621192712JeparaJeparaSmallMixgears621193712PP. Karimun JawaJeparaMediumMixgears621194712PP. Karimun JawaJeparaMediumMixgears621195712Pulau ParangJeparaMediumMixgears18314199712PP. BrondongLamonganMediumMixgears18314199712PP. BrondongLamonganSmallMixgears214199712PP. BrondongLamonganMediumMixgears214190712PP. BrondongLamonganMediumMixgears214191712PP. BrondongLamonganMediumMixgears214192712PP. BajomulyoPati </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>					-	-		
185 712 PP. Tanjung Pandan Belitung Nano Trap 2 7 186 712 PP. Tanjung Pandan Belitung Small Trap 12 63 187 712 PP. Karangsong Indramayu Medium Longline 1 9 188 712 PP. Karangsong Indramayu Medium Mixgears 8 32 190 712 Jepara Jepara Small Mixgears 1 6 192 712 Jepara Jepara Medium Mixgears 68 491 192 712 PP. Karimun Jawa Jepara Small Mixgears 68 491 195 712 Pulau Parang Jepara Small Trap 1 71 197 712 PP. Brondong Lamongan Medium Mixgears 2 14 197 712 PP. Brondong Lamongan Small Dropline 832			—			-		
186712PP. Trangung PandanBelitungSmallTrap1263187712PP. KarangsongIndramayuSmallLongline1165188712PP. KarangsongIndramayuSmallLongline19189712JeparaJeparaMediumMixgears832191712JeparaJeparaMediumMixgears455191712JeparaJeparaMediumMixgears621192712PP. Karimun JawaJeparaMediumMixgears621193712PP. Karimun JawaJeparaMediumMixgears599195712Pulau ParangJeparaMediumMixgears18314195712PP. BrondongLamonganMediumMixgears18314199712PP. BrondongLamonganMediumMixgears2343201712PP. BrondongLamonganMediumMixgears2343210712PP. BrondongLamonganMediumMixgears2343211PP. AgairanLamonganMediumMixgears2343212PP. BajomilyoPatiLargongeLongline116203712PP. BajomilyoPatiMediumLongline216204712PP. AgairanSitubondoNanoLonglin						-		
187712P.P. KarangsongIndramayuMediumLongline11165188712P.P. KarangsongIndramayuSmallLongline19188712JeparaJeparaMediumMirgears832190712JeparaJeparaMediumMirgears16192712JeparaJeparaMediumMirgears28305193712P.P. Karimun JawaJeparaMediumMirgears621197712P.P. Karimun JawaJeparaMediumMirgears69197712P.P. Karimun JawaJeparaMediumMirgears77197712P.P. BrondongLamonganMediumMirgears18314198712P.P. BrondongLamonganMediumMirgears214200712P.P. BrondongLamonganSmallMirgears214202712P.P. BorodongLamonganMediumMirgears214203712P.P. BajomulyoPatiLargeLongline116203712P.P. BajomulyoPatiSmallLongline3956204712P.P. BajomulyoPatiSmallLongline129205712P.P. BajomulyoPatiSmallLongline129206712P.P. BajomulyoPati								
188712P.P. Karangsong P.P. CituisIndramayuSmallLongline19189712P.P. CituisJakartaNanoMixgears832191712JeparaJeparaMediumMixgears16192712JeparaJeparaMediumMixgears28395193712P.P. Karimun JawaJeparaMediumMixgears621194712P.P. Karimun JawaJeparaMediumMixgears599195712Pulau ParangJeparaMediumMixgears18314197712P.B. BrondongLamonganMediumMixgears18314199712P.P. BrondongLamonganManoDropline832201712P.P. BrondongLamonganSmallDropline832201712P.P. BrondongLamonganMediumMixgears2214202712P.P. BrondongLamonganMediumMixgears2214203712P.P. PaciranLamonganMediumMixgears2214204712P.P. BajomulyoPatiMediumMixgears2214205712P.P. BajomulyoPatiMediumMixgears2216206712P.P. BajomulyoPatiMediumLongline129205712P.P. Asem Doyong <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>				-		-		
189712PP. CituisJakartaNanoMixgears832190712JeparaJeparaMediumMixgears16192712JeparaJeparaMediumMixgears28395193712PP. Karimun JawaJeparaMediumMixgears621194712PP. Karimun JawaJeparaSmallMixgears621195712PP. Karimun JawaJeparaSmallTrap17197712PP. BrondongLamonganMediumMixgears18314198712PP. BrondongLamonganMediumMixgears214199712PP. BrondongLamonganSmallMriggears214202712PP. BrondongLamonganSmallMixgears214203712PP. BaricanLamonganMediumMixgears2343204712PP. BaiomulyoPatiLargeLongline4222117205712PP. BajomulyoPatiSmallLongline3956210712PP. BajomulyoPatiSmallLongline16207712PP. BajomulyoPatiSmallLongline116207712PP. BajomulyoPatiSmallLongline112205712PP. BajomulyoPatiSmall				0		0		
190712JeparaJeparaMediumMixgears455191712JeparaJeparaSnallMixgears26197712PP. Karimun JawaJeparaNanoMixgears621198712PP. Karimun JawaJeparaSnallMixgears621195712PUlau ParangJeparaSnallMixgears6491195712Pulau ParangJeparaSnallMixgears599196712PP. BrondongLamonganMediumDropline43575198712PP. BrondongLamonganSnallDropline832200712PP. BrondongLamonganSnallMixgears214201712PP. BorndongLamonganSnallMixgears214202712PP. BarondongLamonganMediumMixgears2233204712PP. BarianLamonganMediumMixgears214205712PP. BajomulyoPatiLargeLongline422117206712PP. BajomulyoPatiMediumLongline1292207712PP. Asem DoyongPemalangSmallLongline12960211712SitubondoSitubondoNanoLongline1216212PP. Asem Doyon				Ũ				
191712JeparaJeparaSmallMixgears16192712PP. Karimun JawaJeparaMediumMixgears28395193712PP. Karimun JawaJeparaSnallMixgears68491195712Pulau ParangJeparaMediumMixgears599196712Pulau ParangJeparaSnallTrap17197712PP. BrondongLamonganMediumMixgears18314199712PP. BrondongLamonganSnallDropline832200712PP. BrondongLamonganSnallMixgears116201712PP. BrondongLamonganSnallMixgears214202712PP. PaciranLamonganMediumDropline116203712PP. PaciranLamonganMediumMixgears214204712PP. BajomulyoPatiLargeLongline422117205712PP. BajomulyoPatiSmallLongline216206712PP. BajomulyoPatiSmallLongline216207712PP. Asem DoyongPemalangSmallLongline216208712PP. Asem DoyongPemalangSmallLongline129712PP. Asem DoyongPemalangSmall								
192712PP. Karimun JawaJeparaMediumMixgears28395193712PP. Karimun JawaJeparaNanoMixgears6821194712PP. Karimun JawaJeparaSmallMixgears68491195712Pulau ParangJeparaMediumMixgears7899196712PP. BrondongLamonganMediumMore and Mixgears18314197712PP. BrondongLamonganMediumMixgears18314200712PP. BrondongLamonganMediumMixgears214201712PP. BrondongLamonganSmallMixgears2343202712PP. BorndongLamonganMediumMore and Mixgears2343203712PP. PaciranLamonganMediumMixgears214204712PP. BajomulyoPatiSmallLongline42117205712PP. BajomulyoPatiSmallLongline216206712PP. BajomulyoPatiSmallLongline129207712PP. Asem DoyongPemalangSmallLongline129209712PP. MayanganProbolinggoLargeLongline129210712PP. MayanganSumenepSmallDropline1060211712			-					
193712PP. Karimun JawaJeparaNanoMixgears621194712PP. Karimun JawaJeparaSmallMixgears68491195712Pulau ParangJeparaSmallTrap17197712PP. BrondongLamonganMediumDropline43575198712PP. BrondongLamonganMediumMixgears18314199712PP. BrondongLamonganSmallMixgears18322200712PP. BrondongLamonganSmallMixgears214201712PP. BorndongLamonganMediumMixgears214202712PP. PaciranLamonganMediumMixgears214203712PP. BajomulyoPatiLargeLongline163956204712PP. BajomulyoPatiMediumLongline21612207712PP. Asem DoyongPemalangSmallDropline112929208712PP. Asem DoyongPemalangSmallDropline1060211712PR. Asem DoyongPemologgoMediumLongline129207712PP. Asem DoyongPemologgoMediumLongline129207712PP. Asem DoyongSumenepSmallDropline1060211 </td <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>0</td> <td></td> <td></td>			-	-		0		
194712PP. Karimun JawaJeparaSmallMixgears68491195712Pulau ParangJeparaMediumMixgears599196712PP. BrondongLamonganMediumDropline43575198712PP. BrondongLamonganMediumMixgears18314197712PP. BrondongLamonganNanoDropline832200712PP. BrondongLamonganSmallDropline18902201712PP. BrondongLamonganMediumDropline116203712PP. PaciranLamonganMediumMixgears2144204712PP. PaciranLamonganMediumMixgears2343204712PP. BajomulyoPatiLargeLongline422117205712PP. BajomulyoPatiSmallLongline216207712PP. BajomulyoPatiSmallLongline129208712PP. MayaganProbolinggoMediumLongline129209712PP. MayaganProbolinggoLargeLongline129201712SitubondoNanoLongline12960211712SitubondoNanoLongline12121712SitubondoNanoLongline1								
195712Pulau ParangJeparaMediumMixgears599196712Pulau ParangJeparaSmallTrap17197712PP. BrondongLamonganMediumMixgears18314199712PP. BrondongLamonganMediumMixgears18314199712PP. BrondongLamonganSmallDropline18902201712PP. BrondongLamonganSmallMixgears214202712PP. BrondongLamonganMediumDropline116203712PP. BajomdyoPatiLamonganMediumMixgears22343204712PP. BajomulyoPatiLamonganMediumLongline422117205712PP. BajomulyoPatiSmallLongline129132206712PP. BajomulyoPatiMediumLongline216207712PP. Asem DoyongPemalangSmallDropline1129208712PP. Asem DoyongProbolinggoLargeLangline185210712SitubondoSitubondoNanoLongline260211712SitubondoSitubondoNanoLongline111215712DungkekSumenepSmallDropline111216<								
196712Pulau ParangJeparaSmallTrap17197712PP. BrondongLamonganMediumDropline43575197712PP. BrondongLamonganMediumMrigears18314199712PP. BrondongLamonganSmallMropline18314199712PP. BrondongLamonganSmallMrigears214200712PP. BrondongLamonganSmallMrigears2343201712PP. PaciranLamonganMediumDropline116203712PP. BajomulyoPatiLargeLongline36956206712PP. BajomulyoPatiSmallDropline129207712PP. BajomulyoPatiSmallDropline129207712PP. BajomulyoPatiSmallDropline129208712PP. MayanganProbolinggoMediumLongline129209712ProbalingsoProbolinggoMediumLongline129210712SitubondoSitubondoNanoDropline166211712SitubondoSitubondoNanoLongline122216712Desa MasalimaSumenepSmallDropline11221712Desa MasalimaSumenepSmall <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
197712PP. BrondongLamonganMediumDropline43575198712PP. BrondongLamonganNanoDropline18314199712PP. BrondongLamonganNanoDropline118902200712PP. BrondongLamonganSmallMixgears214201712PP. BrondongLamonganMediumDropline116203712PP. PaciranLamonganMediumMixgears22343204712PP. BajomulyoPatiLamonganMediumLongline422117205712PP. BajomulyoPatiSmallLongline216207712PP. Asem DoyongPemalangSmallDropline24132208712PP. Asem DoyongProbolinggoMediumLongline129210712Pr. AsymaganProbolinggoLargeLongline129211712SitubondoSitubondoNanoDropline185210712ProbalingsoProbolinggoLargeLongline112211712Desa MasalimaSumenepSmallDropline112212Desa MasalimaSumenepSmallDropline112215712DungkekSumenepSmallDropline112216712DungkekSu			0	-		-		
198712PP. BrondongLamonganMediumMixgears18314199712PP. BrondongLamonganNanoDropline832200712PP. BrondongLamonganSmallDropline118902201712PP. BondongLamonganSmallMixgears214202712PP. PaciranLamonganMediumDropline116203712PP. BajomulyoPatiLargeLongline36956206712PP. BajomulyoPatiSmallLongline216207712PP. BajomulyoPatiSmallLongline129208712PP. BajomulyoPatiSmallLongline129209712PP. Asem DoyongPemalangSmallDropline129201712Pr. MayanganProbolinggoLargeLongline260211712SitubondoSitubondoNanoDropline185210712SitubondoSumenepSmallDropline112212712Desa MasalimaSumenepSmallDropline112213712Desa MasalimaSumenepSmallDropline322216712DungkekSumenepSmallDropline322215712DungkekSumenepSmallDropl			0			-		
199712PP. BrondongLamonganNanoDropline832200712PP. BrondongLamonganSmallDropline11.8902201712PP. BrondongLamonganSmallMixgears214202712PP. PaciranLamonganMediumDropline116203712PP. BajomulyoPatiMediumMixgears22343204712PP. BajomulyoPatiMediumLongline36956206712PP. BajomulyoPatiSmallLongline216207712PP. BajomulyoPatiSmallLongline129208712PP. Asem DoyongPemalangSmallLongline129209712ProbolinggoMediumLongline185210712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline112216712Desa MasalimaSumenepSmallDropline112215712DuskekSumenepSmallDropline322216712DungkekSumenepSmallDropline112215712DungkekSumenepSmallDropline14217712Pagerungan BesarSumenepSmallDropline1 <t< td=""><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></t<>				0				
200712PP. BrondongLamonganSmallDropline118902201712PP. BrondongLamonganMediumMixgears214202712PP. PaciranLamonganMediumDropline116203712PP. PaciranLamonganMediumMixgears22343204712PP. BajomulyoPatiLargeLongline422117205712PP. BajomulyoPatiSmallLongline216207712PP. BajomulyoPatiSmallLongline129208712PP. Asem DoyongPemalangSmallDropline24132208712Pr. MayanganProbolinggoMediumLongline185210712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline112213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepSmallMixgears260213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepSmallDropline112215712DungkekSumenepSmallDropline14216712Gili IyangSumenepSmallDrop			0	-				
201712PP. BrondongLamonganSmallMixgears214202712PP. PaciranLamonganMediumDropline116203712PP. PaciranLamonganMediumMixgears22343204712PP. BajomulyoPatiLargeLongline422117205712PP. BajomulyoPatiSmallLongline216207712PP. BajomulyoPatiSmallLongline129208712PP. Asem DoyongPemalangSmallDropline129209712ProbolinggoProbolinggoMediumLongline129209712ProbolinggoProbolinggoMediumLongline129209712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline112212JugkekSumenepSmallDropline1068213712Desa MasalimaSumenepSmallDropline112215712DungkekSumenepSmallDropline112215712DungkekSumenepSmallDropline322216712Pagerungan BesarSumenepNanoLongline14218712SumenepSumenepNanoLongline1 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>				_				
202712PP. PaciranLamonganMediumDropline116203712PP. PaciranLamonganMediumMixgears22343204712PP. BajomulyoPatiLargeLongline422117205712PP. BajomulyoPatiMediumLongline36956206712PP. BajomulyoPatiMediumLongline216207712PP. Asem DoyongPemalangSmallLongline129208712PP. MayanganProbolinggoMediumLongline129209712ProbalinggoProbolinggoLargeLongline185210712SitubondoSitubondoNanoDropline2060211712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepSmallDropline112215712DungkekSumenepSmallDropline112216712Gili IyangSumenepSmallDropline322216712SumenepSumenepSmallDropline425219712SumenepSumenepSmallDropline425219712SumenepSumenepSmallLongline433221713SumenepSumenepSmallDropline <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>			_					
203712PP. PaciranLamonganMediumMixgears22343204712PP. BajomulyoPatiLargeLongline422117205712PP. BajomulyoPatiSmallLongline36956206712PP. BajomulyoPatiSmallLongline216207712PP. Asem DoyongPemalangSmallDropline24132208712PP. MayanganProbolinggoMediumLongline129209712ProbolinggoProbolinggoLargeLongline129209712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline1068213712Desa MasalimaSumenepSmallMediumDropline112214712DungkekSumenepSmallDropline112215712DungkekSumenepSmallDropline322216712Pagerungan BesarSumenepSmallDropline425219712SumenepSumenepManoLongline425219712SumenepSumenepSmallLongline425220712SumenepSumenepSmallLongline43982219712SumenepSumenepSmall <t< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></t<>			0					
204712PP. BajomulyoPatiLargeLongline422117205712PP. BajomulyoPatiMediumLongline36956206712PP. BajomulyoPatiSmallLongline216207712PP. Asem DoyongPemalangSmallDropline24132208712PP. MayanganProbolinggoMediumLongline129209712ProbolinggoProbolinggoLargeLongline185210712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline2060212712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepSmallDropline112215712DungkekSumenepSmallDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline14218712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepManoLongline14220712SumenepSumenepSmallLongline13221712SumenepSumenepSmallLongline <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>				-				
205712PP. BajomulyoPatiMediumLongline36956206712PP. BajomulyoPatiSmallLongline216207712PP. Asem DoyongPemalangSmallDropline24132208712PP. MayanganProbolinggoMediumLongline129209712ProbolinggoProbolinggoLargeLongline185210712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline1068213712Desa MasalimaSumenepSmallMirgears216214712DurgkekSumenepSmallMirgears216214712DungkekSumenepSmallDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepNanoDropline14218712SumenepSumenepSmallLongline43398220712SumenepSumenepSmallDropline13221712SumenepSumenepSmallDropline2 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td>-</td><td></td><td></td></t<>				_		-		
206712PP. BajomulyoPatiSmallLongline216207712PP. Asem DoyongPemalangSmallDropline24132208712PP. MayanganProbolinggoMediumLongline129209712ProbolinggoProbolinggoMediumLongline129209712ProbolinggoProbolinggoMacLargeLongline129200712SitubondoSitubondoNanoDropline2060211712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepSmallDropline122215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMacoDropline14217712SumenepSumenepNanoLongline425219712SumenepSumenepMacoDropline14217712SumenepSumenepMacoIropline14218712SumenepSumenepManoLongline<								
207712PP. Asem DoyongPemalangSmallDropline24132208712PP. MayanganProbolinggoMediumLongline129209712ProbolinggoProbolinggoLargeLongline185210712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline2060212712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepSmallDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMediumDropline228220712SumenepSumenepManoLongline14218712SumenepSumenepNanoLongline43398220712SumenepSumenepManoLongline14218712SumenepSumenepNanoLongline14219712SumenepSumenepNanoLongline43398								
208712PP. MayanganProbolinggoMediumLongline129209712ProbolinggoProbolinggoLargeLongline185210712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline2060211712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepSmallDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMediumDropline14211712SumenepSumenepNanoLongline43398220712SumenepSumenepMainDropline14211712SumenepSumenepNanoLongline43398220712SumenepSumenepSmallDropline13221712SumenepSumenepSmallDropline43398223712SumenepSumenepSmallDropline43398								
209712ProbolinggoProbolinggoLargeLongline185210712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline2060212712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepMediumDropline112214712DungkekSumenepMediumDropline322216712Gili JyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallDropline751217712Pagerungan BesarSumenepMediumDropline425219712SumenepSumenepMediumDropline425220712SumenepSumenepMediumDropline14221712SumenepSumenepNanoLongline13222712SumenepSumenepSmallDropline14221712SumenepSumenepSmallDropline13222712SumenepSumenepSmallDropline13222712SumenepSumenepSmallDropline13223712SumenepSumenepSmallDropline13 <t< td=""><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></t<>				0				
210712SitubondoSitubondoNanoDropline2060211712SitubondoSitubondoNanoLongline2060212712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepMediumDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepSmallLongline425219712SumenepSumenepManoLongline425220712SumenepSumenepNanoLongline4398222712SumenepSumenepNanoLongline4398223712SumenepSumenepSmallDropline4013398224712PagatanTanah BumbuSmallDropline28226713PP. Filial KlandasanBalikpapanSmallDropline28226713PP. Filial KlandasanBalikpapanSmallDropline321228713PP. KlandasanBalikpapanSmallDropline				00		-		
211712SitubondoSitubondoNanoLongline2060212712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepMediumDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMediumDropline228200712SumenepSumenepManoLongline44211712SumenepSumenepNanoLongline44219712SumenepSumenepManoDropline14221712SumenepSumenepNanoLongline43222712SumenepSumenepNanoLongline43223712SumenepSumenepSmallDropline14224712PagatanTanah BumbuSmallDropline4398223712SumenepSumenepSmallLongline43398223712SumenepSumenepSmallLongline43398224			00	88		0		
212712Desa MasalimaSumenepSmallDropline1068213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepMediumDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepNanoLongline425219712SumenepSumenepMediumDropline228220712SumenepSumenepManoDropline14221712SumenepSumenepNanoDropline14221712SumenepSumenepManoDropline13222712SumenepSumenepNanoLongline13223712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline321228713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline<								
213712Desa MasalimaSumenepSmallMixgears216214712DungkekSumenepMediumDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallLongline14218712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMediumDropline228220712SumenepSumenepManoDropline14211712SumenepSumenepNanoLongline14221712SumenepSumenepNanoLongline13222712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanSmallDropline1303229713PP. Manggar BaruBalikpapanSmallLongline						-		
214712DungkekSumenepMediumDropline112215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepSmallLongline14218712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMediumDropline228220712SumenepSumenepNanoDropline14221712SumenepSumenepNanoLongline13222712SumenepSumenepNanoLongline13223712SumenepSumenepSmallDropline4013398224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline23132228713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanSmallDropline333229713PP. Manggar BaruBalikpapanMediumDropline1303229713PP. Manggar BaruBalikpapa						*		
215712DungkekSumenepSmallDropline322216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepNanoLongline14218712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMediumDropline228220712SumenepSumenepNanoDropline14221712SumenepSumenepNanoLongline13222712SumenepSumenepNanoLongline13223712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline321228713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitung				_				
216712Gili IyangSumenepSmallDropline751217712Pagerungan BesarSumenepNanoLongline14218712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMediumDropline228220712SumenepSumenepNanoDropline14221712SumenepSumenepNanoLongline13222712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline33331227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
217712Pagerungan BesarSumenepNanoLongline14218712Pagerungan BesarSumenepSmallLongline425219712SumenepSumenepMediumDropline228220712SumenepSumenepNanoDropline14221712SumenepSumenepNanoLongline13222712SumenepSumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline321228713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanSmallDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline13								
218712Pagerungan BesarSumenepSumenepSmallLongline425219712SumenepSumenepMediumDropline228220712SumenepSumenepNanoDropline14221712SumenepSumenepNanoLongline13222712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline321229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungNanoTrap13								
219712SumenepSumenepMediumDropline228220712SumenepSumenepNanoDropline14221712SumenepSumenepNanoLongline13222712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline321228713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
220712SumenepSumenepNanoDropline14221712SumenepSumenepSumenepNanoLongline13222712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline23132227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
221712SumenepSumenepNanoLongline13222712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline23132227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
222712SumenepSumenepSmallDropline4013398223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline23132227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15			-	-				
223712SumenepSumenepSmallLongline49392224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline23132227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15				1				
224712PagatanTanah BumbuSmallDropline210225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline23132227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15			1			-		
225713PP. Filial KlandasanBalikpapanNanoDropline28226713PP. Filial KlandasanBalikpapanSmallDropline23132227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
226713PP. Filial KlandasanBalikpapanSmallDropline23132227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
227713PP. KlandasanBalikpapanSmallDropline321228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
228713PP. Manggar BaruBalikpapanMediumDropline17303229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
229713PP. Manggar BaruBalikpapanSmallLongline844230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
230713PP. Tanjung PandanBelitungNanoTrap13231713PP. Tanjung PandanBelitungSmallDropline15								
231 713 PP. Tanjung Pandan Belitung Small Dropline 1 5						-		
232 713 PP. Tanjung Pandan Belitung Small Trap 4 21								
	232	713	PP. Tanjung Pandan	Belitung	Small	Trap	4	21

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
233	713	Lok Tuan	Bontang	Nano	Dropline	1	1
234	713	Lok Tuan	Bontang	Nano	Mixgears	3	12
235	713	PP. Tanjung Limau	Bontang	Nano	Dropline	5	11
236	713	PP. Tanjung Limau	Bontang	Small	Dropline	4	24
237	713	Tanjung Laut	Bontang	Nano	Dropline	1	1
238	713	Dannuang	Bulukumba	Nano	Mixgears	20	20
239	713	Kalumeme	Bulukumba	Nano	Mixgears	20	20
240	713	Kota Bulukumba	Bulukumba	Nano	Mixgears	300	300
241	713	Para-para	Bulukumba	Small	Dropline	20	120
242	713	PP. Soro Kempo	Dompu	Nano	Longline	300	300
243	713	PP. Labean	Donggala	Nano	Dropline	27	24
244	713	Anawoi	Kolaka	Medium	Trap	5	64
245	713	Gang Kakap, Muara Jawa	Kutai Kartanegara	Nano	Longline	20	60
246	713	Kampung Terusan	Kutai Kartanegara	Small	Longline	10	85
247	713	Kuala Samboja	Kutai Kartanegara	Small	Longline	3	15
248	713	Pantai Biru Kersik	Kutai Kartanegara	Nano	Dropline	16	48
249	713	Semangkok	Kutai Kartanegara	Nano	Dropline	10	31
250	713	Gang Mulia, Kampung Kajang	Kutai Timur	Small	Dropline	1	5
251	713	Maloy	Kutai Timur	Small	Dropline	1	5
252	713	Muara Selangkau	Kutai Timur	Nano	Dropline	40	120
253	713	Majene	Majene	Nano	Mixgears	52	156
254	713	Majene	Majene	Small	Dropline	1	7
255	713	Majene	Majene	Small	Longline	12	84
256	713	Mamuju	Mamuju	Nano	Dropline	31	93
257	713	Mamuju	Mamuju	Small	Dropline	4	20
258	713	PP. Labuhan Bajo	Manggarai Barat	Nano	Dropline	40	15
259	713	PP. Konge	Nagekeo	Nano	Dropline	50	16
260	713	Muara Pasir	Paser	Nano	Longline	10	20
261	713	PP. Bajomulyo	Pati	Large	Longline	3	130
262	713	Kampung Pejala	Penajam Paser Utara	Small	Mixgears	17	85
263	713	Logpond CV. Alas	Penajam Paser Utara	Nano	Dropline	26	78
264	713	Logpond CV. Alas	Penajam Paser Utara	Small	Dropline	4	20
265	713	Logpond SDR	Penajam Paser Utara	Nano	Dropline	14	42
266	713	Muara Tunan	Penajam Paser Utara	Nano	Dropline	40	120
267	713	Nenang	Penajam Paser Utara	Small	Trap	50	253
268	713	PP. Mayangan	Probolinggo	Medium	Longline	1	27
269	713	PP. Kenyamukan	Sangatta	Medium	Dropline	3	32
270	713	PP. Kenyamukan	Sangatta	Nano	Dropline	40	40
271	713	PP. Kenyamukan	Sangatta	Small	Dropline	11	75
272	713	PP. Sangatta	Sangatta	Medium	Dropline	1	10
273	713	PP. Sangatta	Sangatta	Small	Dropline	5	31
274	713	Labuan Sangoro	Sumbawa	Nano	Longline	20	37
275	713	Labuan Sumbawa	Sumbawa	Large	Dropline	1	34
276	713	Labuan Terata	Sumbawa	Nano	Dropline	4	7
277	713	Labuhan Sumbawa	Sumbawa	Medium	Dropline	1	12
278	713	Labuhan Sumbawa	Sumbawa	Small	Dropline	$\overline{7}$	36
279	713	Sumbawa	Sumbawa	Nano	Longline	50	50
280	713	PP. Beba	Takalar	Medium	Dropline	26	362
281	713	PP. Beba	Takalar	Medium	Gillnet	14	215
282	713	PP. Beba	Takalar	Medium	Longline	82	1003
283	713	PP. Beba	Takalar	Nano	Longline	1	3
284	713	PP. Paotere	Takalar	Medium	Dropline	1	12
285	713	PP. Paotere	Takalar	Small	Dropline	1	8
286	713	PP. Paotere	Takalar	Small	Longline	3	24
287	714	Kabola	Alor	Nano	Dropline	15	10
288	714	Kokar	Alor	Nano	Dropline	100	88
289	714	Banggai Kepulauan	Banggai Kepulauan	Nano	Dropline	10	10
290	714	Banggai Laut	Banggai Laut	Nano	Dropline	50	50
					•		

Row		Registration Port	Home District	Boat Size		Ν	Total GT
291	714	Bontosi	Banggai Laut	Nano	Dropline	2	5
292	714	Kasuari	Banggai Laut	Nano	Longline	18	21
293	714	Matanga	Banggai Laut	Nano	Longline	5	4
294	714	Sonit	Banggai Laut	Nano	Longline	3	9
295	714	Tinakin	Banggai Laut	Nano	Dropline	1	1
296	714	PP. Tanjung Pandan	Belitung	Small	Dropline	1	6
297	714	PPI Soropia	Konawe	Medium	Trap	1	12
298	714	PPI Soropia	Konawe	Nano	Trap	2	1
299	714	Labengki	Konawe Utara	Nano	Dropline	4	5
300	714	Labengki	Konawe Utara	Nano	Longline	1	1
301	714	Labengki	Konawe Utara	Nano	Mixgears	5	5
302	714	Batu Lubang	Kota Ambon	Nano	Dropline	30	53
303	714	Asilulu	Maluku Tengah	Nano	Dropline	30	56
304	714	PP. Tulehu	Maluku Tengah	Large	Dropline	1	34
305	714	Kampung Barbar	Maluku Tenggara Barat	Nano	Dropline	6	12
306	714	Pasar Baru Omele Saumlaki	Maluku Tenggara Barat	Nano	Dropline	6	13
307	714	Pasar Baru Omele Saumlaki	Maluku Tenggara Barat	Nano	Longline	1	3
308	714	Pasar Lama Saumlaki	Maluku Tenggara Barat	Nano	Dropline	1	2
309	714	Saumlaki	Maluku Tenggara Barat	Nano	Dropline	3	8
310	714	PP. Kema	Minahasa Utara	Large	Dropline	1	30
311	714	Desa Bahonsuai	Morowali	Nano	Dropline	2	2
312	714	Desa Umbele	Morowali	Nano	Dropline	2	2
313	714	Desa Umbele	Morowali	Nano	Longline	1	1
314	714	Limbo	Pulau Taliabu	Nano	Mixgears	30	18
315	714	Dusun Anauni	Seram Bagian Barat	Nano	Dropline	15	15
316	714	Dusun Anauni	Seram Bagian Barat	Nano	Longline	35	44
317	714	Dusun Huaroa	Seram Bagian Barat	Nano	Dropline	50	74
318	714	Dusun Huhua	Seram Bagian Barat	Nano	Mixgears	20	27
319	714	Dusun Naeselan	Seram Bagian Barat	Nano	Mixgears	20	33
320	714	Dusun Pattinea	Seram Bagian Barat	Nano	Mixgears	50	67
321	714	Dusun Pohon Batu	Seram Bagian Barat	Nano	Dropline	30	43
322	714	Dusun Waisela	Seram Bagian Barat	Nano	Dropline	5	7
323	714	Dusun Waisela	Seram Bagian Barat	Nano	Longline	10	14
324	714	Dusun Wayohong	Seram Bagian Barat	Nano	Dropline	10	12
325	714	Langgur Tual	Tual	Medium	Longline	1	15
326	714	Langgur Tual	Tual	Small	Longline	2	13
327	714	Mangon Tual	Tual	Small	Dropline	1	7
328	714	PP. Tual	Tual	Large	Dropline	1	36
329	714	PP. Tual	Tual	Medium	Dropline	2	47
330	714	PP. Tual	Tual	Medium	Longline	3	62
331	714	PP. Tual	Tual	Nano	Dropline	1	2
332	714	PP. Tual	Tual	Nano	Longline	1	4
333	714	PP. Tual	Tual	Small	Dropline	2	13
334	714	PP. Tual	Tual	Small	Longline	3	18
335	714	Watdek	Tual	Small	Mixgears	5	32
336	714	Binongko	Wakatobi	Medium	Dropline	1	13
337	714	Binongko	Wakatobi	Nano	Dropline	28	16
338	714	Dermaga Desa Wali	Wakatobi	Small	Dropline	1	5
339	714	Desa Lagongga	Wakatobi	Nano	Dropline	7	26
340	714	Desa Lagongga	Wakatobi	Small	Dropline	1	6
341	714	Desa Wali	Wakatobi	Nano	Dropline	2	8
342	714	Pelabuhan Lagelewa	Wakatobi	Nano	Dropline	1	3
343	715	Pagimana	Banggai	Nano	Dropline	3	4
344	715	Pagimana	Banggai	Nano	Mixgears	60	48
345	715	Pangkalaseang	Banggai	Nano	Dropline	10	10
346	715	Kampung Sekar	Fakfak	Nano	Dropline	7	7
	$715 \\ 715$	Kampung Sekar Kampung Sosar, Kokas	Faktak Fakfak	Nano Nano	Dropline Dropline	7 7	7 7

Row	WPP	8	Home District	Boat Size		Ν	Total GT
349	715	Pasar Sorpeha	Fakfak	Nano	Dropline	7	17
350	715	PP. Dulan Pokpok	Fakfak	Nano	Dropline	215	206
51	715	PP. Fakfak	Fakfak	Medium	Longline	3	46
352	715	PP. Fakfak	Fakfak	Small	Longline	2	19
353	715	Bacan	Halmahera Selatan	Nano	Dropline	39	18
354	715	Bacan	Halmahera Selatan	Nano	Mixgears	1	0
355	715	Bacan Barat	Halmahera Selatan	Nano	Dropline	6	2
356	715	Bacan Tengah	Halmahera Selatan	Nano	Dropline	35	11
357	715	Bacan Timur	Halmahera Selatan	Nano	Dropline	4	1
358	715	Bacan Utara	Halmahera Selatan	Nano	Dropline	5	2
359	715	Desa Lalei	Halmahera Selatan	Nano	Dropline	29	17
360	715	Gane Barat	Halmahera Selatan	Nano	Dropline	15	5
361	715	Gane Timur Selatan	Halmahera Selatan	Nano	Dropline	40	13
362	715	Kep. Batang Lomang	Halmahera Selatan	Nano	Dropline	12	4
363	715	Kepulauan Joronga	Halmahera Selatan	Nano	Dropline	7	2
364	715	Mandioli Selatan	Halmahera Selatan	Nano	Dropline	13	4
365	715	Mandioli Utara	Halmahera Selatan	Nano	Dropline	17	5
366	715	Puau Obilatu	Halmahera Selatan	Nano	Dropline	10	3
367	715	Pulau Obi	Halmahera Selatan	Nano	Dropline	137	44
368	715	Buli	Halmahera Timur	Nano	Dropline	7	7
369	715	Halmahera Timur	Halmahera Timur	Nano	Dropline	48	78
370	715	Kaimana	Kaimana	Nano	Dropline	53	53
371	715	PU. Kaimana	Kaimana	Large	Longline	2	61
372	715	PU. Kaimana	Kaimana	Medium	Longline	6	101
373	715	PP. Kema	Minahasa Utara	Large	Dropline	8	339
374	715	PP. Kema	Minahasa Utara	Medium	Dropline	12	349
375	715	Desa Pantai Pos, Bula	Seram Bagian Timur	Nano	Dropline	30	50
376	715	Desa Sesar, Bula	Seram Bagian Timur	Nano	Dropline	10	20
377	715	Desa Waru	Seram Bagian Timur	Nano	Dropline	50	90
378	715	Pulau Parang	Seram Bagian Timur	Nano	Dropline	50	92
379	715	Sofifi	Sofifi	Nano	Dropline	10	10
380	715	Jembatan Puri Sorong	Sorong	Medium	Dropline	5	94
381	715	Jembatan Puri Sorong	Sorong	Medium	Mixgears	2	26
382	715	PP. Sorong	Sorong	Medium	Dropline	8	145
383	715	PP. Sorong	Sorong	Medium	Longline	1	17
384	715	PP. Sorong	Sorong	Medium	Trap	9	136
385	715	PP. Sorong	Sorong	Nano	Dropline	7	22
386	715	PP. Sorong	Sorong	Nano	Mixgears	2	6
387	715	PP. Sorong	Sorong	Small	Dropline	4	26
388	715	PP. Sorong	Sorong	Small	Trap	2	18
389	715	Bajugan	Tolitoli	Nano	Dropline	10	6
390	716	Biduk-biduk	Berau	Medium	Dropline	1	22
391	716	Biduk-biduk	Berau	Nano	Dropline	23	69
392	716	Desa Tanjung Batu	Berau	Nano	Dropline	67	201
393	716	Desa Tanjung Batu	Berau	Nano	Trap	1	3
394	716	Giring-giring	Berau	Nano	Dropline	22	66
395	716	Labuan Cermin	Berau	Nano	Dropline	1	3
396	716	Logpond, Batu Putih	Berau	Nano	Dropline	10	16
397	716	P. Derawan	Berau	Nano	Trap	4	7
398	716	Pantai Harapan	Berau	Nano	Dropline	20	60
399	716	Pulau Balikukup, Batu Putih	Berau	Nano	Longline	5	20
400	716	Tanjung Batu	Berau	Nano	Trap	6	18
401	716	Tanjung Batu	Berau	Small	Trap	1	8
402	716	Tanjung Perepat	Berau	Nano	Dropline	5	13
403	716	Teluk Sulaiman	Berau	Nano	Dropline	29	87
404	716	Desa Sampiro	Bolaang Mongondow Utara	Nano	Mixgears	11	4
105	716	Desa Bulontio	Gorontalo Utara	Nano	Dropline	11	5
	716	Desa Buluwatu	Gorontalo Utara	Nano	Dropline	21	16

Table 2.14: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP,
Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
$(Nano < 5 \text{ GT}, \text{ Small 5-}{<}10 \text{ GT}, \text{ Medium 10-}30 \text{ GT}, \text{ Large }{>}30 \text{ GT})$

		Registration Port	Home District	Boat Size	Gear	Ν	Total GT
408	716	Desa Huntokalo	Gorontalo Utara	Nano	Dropline	10	3
	716	Desa Tihengo	Gorontalo Utara	Nano	Dropline	26	7
	716	Desa Dalako Bembanehe	Kepulauan Sangihe	Nano	Dropline	4	2
	716	Desa Lipang	Kepulauan Sangihe	Nano	Dropline	5	2
	716	Desa Paruruang	Kepulauan Sangihe	Nano	Dropline	16	8
	716	Desa Parururang	Kepulauan Sangihe	Nano	Dropline	5	2
413	716	Kampung Lipang	Kepulauan Sangihe	Nano	Dropline	5	1
414	716	Sangihe	Kepulauan Sangihe	Nano	Dropline	2	0
415	716	Tariang Baru	Kepulauan Sangihe	Nano	Longline	4	3
416	716	Buhias	Kepulauan Sitaro	Nano	Dropline	153	124
417	716	Mahongsawang Tagulandang	Kepulauan Sitaro	Nano	Dropline	8	4
418	716	Mongsawang	Kepulauan Sitaro	Nano	Dropline	16	6
419	716	Pulau Biaro	Kepulauan Sitaro	Nano	Dropline	29	7
420	716	Desa Damau	Talaud	Nano	Dropline	8	3
421	716	Desa Makatara	Talaud	Nano	Dropline	20	24
422	716	Desa Makatara, Dusun Bawunia	Talaud	Nano	Dropline	1	1
423	716	Desa Makatara, Dusun Bawunian	Talaud	Nano	Dropline	4	3
	716	Belakang BRI, Selumit Pantai	Tarakan	Nano	Longline	46	138
	716	Belakang BRI, Selumit Pantai	Tarakan	Small	Longline	4	20
	716	Mamburungan Dalam	Tarakan	Nano	Mixgears	48	144
	717	Biak	Biak	Nano	Dropline	1796	1793
	717	Desa Nikakamp	Biak	Nano	Dropline	4	7
	717	Desa Tanjung Barari	Biak	Nano	Dropline	5	4
	717	Fanindi Pantai	Manokwari	Nano	Dropline	4	10
	717	Kampung Fanindi	Manokwari	Nano	Dropline	20	21
	717	Manokwari	Manokwari	Nano	Dropline	6	16
	717	PP. Sanoba	Nabire	Nano	Dropline	12	30
	717	Wasior	Teluk Wondama	Nano	Dropline	12	$\frac{30}{23}$
	718	PP. Muara Angke	Jakarta	Large	Dropline	2	$\frac{23}{97}$
	718	PP. Muara Angke	Jakarta	Medium	Dropline	1	30
	718	PP. Nizam Zachman	Jakarta	Large	Longline	4	205
	718	Namatota	Kaimana	Large	Longline	6	$\frac{203}{379}$
	718	PP. Kaimana	Kaimana	Large	Longline	1	45
	718	Dusun Wamar Desa Durjela	Kamana Kepulauan Aru	Medium	Longline	4	43 73
	718				Gillnet	4	73 82
	718 718	PP. Bajomulyo	Kepulauan Aru	Large		$\frac{1}{2}$	$\frac{82}{92}$
		PP. Benjina PP. Dobo	Kepulauan Aru	Large	Longline	2 8	
	718		Kepulauan Aru	Large	Gillnet		527
	718	PP. Dobo	Kepulauan Aru	Large	Longline	10	596
	718	PP. Dobo	Kepulauan Aru	Medium	Dropline Cilleret	93	1658
	718	PP. Dobo	Kepulauan Aru	Medium Medium	Gillnet	5 10	121
	718 718	PP. Dobo	Kepulauan Aru Kepulauan Aru	Medium	Longline	10	185
	718 719	PP. Dobo	Kepulauan Aru	Nano	Dropline Law alian	11	30
	718	PP. Dobo	Kepulauan Aru	Nano	Longline	8	23 56
	718	PP. Dobo	Kepulauan Aru	Small	Dropline	7	56 7
	718	PP. Dobo	Kepulauan Aru	Small	Longline	1	7
	718	PP. Kaimana	Kepulauan Aru	Large	Longline	1	51
	718	PP. Klidang Lor	Kepulauan Aru	Large	Gillnet	1	73
	718	PP. Mayangan	Kepulauan Aru	Large	Longline	19	1405
	718	PP. Merauke	Kepulauan Aru	Large	Longline	4	397
	718	PP. Nizam Zachman	Kepulauan Aru	Large	Gillnet	1	92
	718	PP. Pekalongan	Kepulauan Aru	Large	Gillnet	1	115
	718	PU. Dobo	Kepulauan Aru	Large	Gillnet	3	285
	718	PU. Dobo	Kepulauan Aru	Large	Longline	36	2670
100	718	Saumlaki	Maluku Tenggara Barat	Nano	Dropline	37	109
	718	Saumlaki	Maluku Tenggara Barat	Small	Dropline	1	5
461							
$\begin{array}{c} 461 \\ 462 \end{array}$	718	Saumlaki	Maluku Tenggara Barat	Small	Longline	5	37
$461 \\ 462 \\ 463$		Saumlaki PP. Bajomulyo PP. Merauke	Maluku Tenggara Barat Merauke Merauke	Small Large Large	Longline Gillnet Dropline	$\frac{5}{1}$	$37 \\ 91 \\ 106$

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
465	718	PP. Merauke	Merauke	Large	Gillnet	48	3873
466	718	PP. Merauke	Merauke	Large	Longline	2	213
467	718	PP. Merauke	Merauke	Medium	Gillnet	5	138
468	718	PP. Nizam Zachman	Merauke	Large	Dropline	5	455
469	718	PP. Nizam Zachman	Merauke	Large	Gillnet	13	841
470	718	PP. Nizam Zachman	Merauke	Large	Longline	1	60
471	718	PP. Poumako	Merauke	Medium	Gillnet	3	88
472	718	PP. Tegal	Merauke	Large	Gillnet	1	148
473	718	PP. Bajomulyo	Mimika	Large	Longline	1	82
474	718	PP. Dobo	Mimika	Large	Gillnet	1	75
475	718	PP. Mayangan	Mimika	Large	Gillnet	1	129
476	718	PP. Merauke	Mimika	Large	Gillnet	2	123
477	718	PP. Merauke	Mimika	Medium	Gillnet	2	49
478	718	PP. Muara Angke	Mimika	Large	Gillnet	1	92
479	718	PP. Nizam Zachman	Mimika	Large	Gillnet	1	88
480	718	PP. Paumako	Mimika	Large	Gillnet	2	60
481	718	PP. Paumako	Mimika	Medium	Gillnet	2	58
482	718	PP. Pekalongan	Mimika	Large	Gillnet	1	112
483	718	PP. Pomako	Mimika	Medium	Gillnet	1	16
484	718	PP. Poumako	Mimika	Large	Gillnet	3	90
485	718	PP. Poumako	Mimika	Medium	Gillnet	15	387
486	718	PP. Poumako	Mimika	Small	Gillnet	1	8
487	718	PP. Bajomulyo	Pati	Large	Longline	2	217
488	718	Bagansiapiapi	Probolinggo	Large	Longline	1	40
489	718	PP. Dobo	Probolinggo	Large	Longline	2	142
490	718	PP. Mayangan	Probolinggo	Large	Gillnet	3	124
491	718	PP. Mayangan	Probolinggo	Large	Longline	33	2095
492	718	PP. Mayangan	Probolinggo	Medium	Longline	7	199
493	718	Probolinggo	Probolinggo	Large	Longline	19	1408
494	718	PP. Lappa	Sinjai	Large	Dropline	1	35
495	718	PP. Lappa	Sinjai	Medium	Dropline	10	233
496	718	Timika	Timika	Medium	Longline	3	88
497	718	PP. Bajomulyo	Tual	Large	Longline	1	87
498	718	PP. Tual	Tual	Medium	Dropline	1	28
499	718	PP. Tual	Tual	Nano	Longline	1	4
500	718	PP. Tual	Tual	Small	Dropline	1	6
		TOTAL				10329	61081

2.5 I-Fish Community

I-Fish Community only stores data that are relevant to fisheries management, whereas data on processed volume and sales, from the Smart Weighing and Measuring System, remain on servers at processing companies. Access to the I-Fish Community database is controlled by user name and password. I-Fish Community has different layers of privacy, which is contingent on the user's role in the supply chain. For instance, boat owners may view exact location of their boats, but not of the boats of other owners.

I-Fish Community has an automatic length-frequency distribution reporting system for length-based assessment of the fishery by species. The database generates length frequency distribution graphs for each species, together with life history parameters including length at maturity (Lmat), optimum harvest size (Lopt), asymptotic length-(Linf), and maximum total length (Lmax). Procedures for estimation of these length based life history characteristics are explained in the "Guide to Length Based Stock Assessment" (Mous et al., 2019). The data base also includes size limits used in the trade. These "trade limit" lengths are derived from general buying behavior (minimal weight) of processing companies. The weights are converted into lengths by using species-specific length- weight relationships.

Each length frequency distribution is accompanied by an automated length-based assessment on current status of the fishery by species. Any I-Fish Community user can access these graphs and the conclusions from the assessments. The report produces an assessment for the 50 most abundant species in the fishery, based on complete catches from the most recent complete calendar year (to ensure full year data sets). The graphs show the position of the catch length frequency distributions relative to various life history parameter values and trading limits for each species. Relative abundance of specific size groups is plotted for all years for which data are available, to indicate trends in status by species.

Immature fish, small mature fish, large mature fish, and a subset of large mature fish, namely "mega-spawners", which are fish larger than 1.1 times the optimum harvest size (Froese 2004), make up the specific size groups used in our length based assessment. For all fish of each species in the catch, the percentage in each category is calculated for further use in the length based assessment. These percentages are calculated and presented as the first step in the length based assessment as follows: W% is immature (smaller than the length at maturity), X% is small matures (at or above size at maturity but smaller than the optimum harvest size), and Y% is large mature fish (at or above optimum harvest size). The percentage of mega-spawners is Z%.

The automated assessment comprises of six elements from the catch length frequencies. These elements all work with length based indicators of various kinds to draw conclusions from species specific length frequencies in the catch.

1. Minimum size as traded compared to length and maturity.

We use a comparison between the trade limit (minimum size accepted by the trade) and the size at maturity as an indicator for incentives from the trade for either unsustainable targeting of juveniles or for more sustainable targeting of mature fish that have spawned at least once. We consider a trade limit at 10% below or above the length at maturity to be significantly different from the length at maturity and we consider trade limits to provide incentives for targeting of specific sizes of fish through price differentiation. IF "TradeLimit" is lower than 0.9 * L-mat THEN: "The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high."

ELSE, IF "TradeLimit" is greater than or equal to 0.9 * L-mat AND "TradeLimit" is lower than or equal to 1.1 * L-mat THEN: "The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium."

ELSE, IF "TradeLimit" is greater than 1.1 * L-mat THEN: "The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low."

2. Proportion of immature fish in the catch.

With 0% immature fish in the catch as an ideal target (Froese, 2004), a target of 10% or less is considered a reasonable indicator for sustainable (or safe) harvesting (Fujita et al., 2012; Vasilakopoulos et al., 2011). Zhang et al. (2009) consider 20% immature fish in the catch as an indicator for a fishery at risk, in their approach to an ecosystem based fisheries assessment. Results from meta-analysis over multiple fisheries showed stock status over a range of stocks to fall below precautionary limits at 30% or more immature fish in the catch (Vasilakopoulos et al., 2011). The fishery is considered highly at risk when more than 50% of the fish in the catch are immature (Froese et al, 2016).

IF "% immature" is lower than or equal to 10% THEN: "At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low."

ELSE, IF "% immature" is greater than 10% AND "% immature" is lower than or equal to 20% THEN: "Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium."

ELSE, IF "% immature" is greater than 20% AND "% immature" is lower than or equal to 30% THEN: "Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium."

ELSE, IF "% immature" is greater than 30% AND "% immature" is lower than or equal to 50% THEN: "Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high."

ELSE, IF "% immature" is greater than 50% THEN: "The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high."

3. Current exploitation level.

We use the current exploitation level expressed as the percentage of fish in the catch below the optimum harvest size as an indicator for fisheries status. We consider a proportion of 65% of the fish (i.e. the vast majority in numbers) in the catch below the optimum harvest size as an indicator for growth overfishing. We also consider a majority in the catch around or above the optimum harvest size as an indicator for minimizing the impact of fishing (Froese et al., 2016). This indicator will be achieved when less than 50% of the fish in the catch are below the optimum harvest size.

IF "% immature + % small mature" is greater than or equal to 65% THEN: "The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high."

ELSE, IF "% immature + % small mature" is lower than or equal to 50% THEN: "The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low."

ELSE, IF "% immature + % small mature" is greater than 50% AND "% immature + % small mature" is lower than 65% THEN: "The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium."

4. Proportion of mega spawners in the catch.

Mega spawners are fish larger than 1.1 times the optimum harvest size. We consider a proportion of 30% or more mega spawners in the catch to be a sign of a healthy population (Froese, 2004), whereas lower proportions are increasingly leading to concerns, with proportions below 20% indicating great risk to the fishery.

IF "% mega spawners" is greater than 30% THEN: "More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low."

ELSE, IF "% mega spawners" is greater than 20% AND "% mega spawners" is lower than or equal to 30% THEN: "The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium." ELSE, IF "% mega spawners" is lower than or equal to 20%, THEN: "Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

5. Spawning Potential Ratio.

As an indicator for Spawning Potential Ratio (SPR, Quinn and Deriso, 1999), we used the estimated spawning stock biomass divided by the spawning stock biomass of that population if it would have been pristine (see, for example, Meester et al 2001). We calculated SPR on a per-recruit basis from life-history parameters Z, F, K (von Bertalanffy), and Linf. We estimated the instantaneous total mortality (Z) from the equilibrium Beverton-Holt estimator from length data using Ehrhardt and Ault (1992) bias-correction, implemented through the function bheq2 of the R Fishmethods package.

We estimated the natural rate of mortality (M) using Froese and Pauly (2000) empirical formula with asymptotic length as estimated by species and an ambient water temperature at fishing depth estimated at about 20 degrees Celcius. With an asymptotic length for a snapper of about 80cm this results in an M of about 0.4, which aligns well with the mean of reported values from the literature (Martinez-Andrade, 2003). The fishing mortality F follows as the difference between total and natural mortality. We estimated K from Lopt and M and Linf, using the equation presented in Froese and Binohlan 2000: $K = M^*Lopt / 3^*(Linf-Lopt)$.

In a perfect world, fishery biologists would know what the appropriate SPR should be for every harvested stock based on the biology of that stock. Generally, however, not enough is known about managed stocks to be so precise. However, studies show that some stocks (depending on the species of fish) can maintain themselves if the spawning stock biomass per recruit can be kept at 20 to 35% (or more) of what it was in the un-fished stock. Lower values of SPR may lead to severe stock declines (Wallace and Fletcher, 2001). Froese et al. (2016) considered a total population biomass B of half the pristine population biomass Bo to be the lower limit reference point for stock size, minimizing the impact of fishing. Using SPR and B/Bo estimates from our own data set, this Froese et al. (2016) lower limit reference point correlates with an SPR of about 40%, not far from but slightly more conservative than the Wallace and Fletcher (2001) reference point. We chose an SPR of 40% as our reference point for low risk and after similar comparisons we consider and SPR between 25% and 40% to represent a medium risk situation.

IF "SPR" is lower than 25% THEN: "SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high."

ELSE, IF "SPR" is greater than or equal to 25% AND "SPR" is lower than 40% THEN: "SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium."

ELSE, IF "SPR" is greater than or equal to 40% THEN: "SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low."

3 Fishing grounds and traceability

Fishing grounds in WPP 715, mainly covering the Maluku and Seram Seas, are closely connected to those in surrounding fisheries management areas. The fleets that operate on these connected fishing grounds typically cover multiple WPP, often within single fishing trips. Spot trace data show great geographic spread and mobility (Figures 3.1 to 3.3) especially by medium-scale snapper fishing boats, which are making trips to fishing grounds that are up to 1,000 kilometres away from home ports.

Part of the fishing activity recorded inside WPP 715 boundaries is by fishing vessels originating from outside this area. For the purpose of this report, all fish catches recorded by SPOT and CODRS data as catches from actual fishing activity within WPP 715 boundaries were included in the stock assessments for this WPP, regardless of origin of the fishing vessel.

Decision making by boat owners on various movements can be based on fisheries technical issues such as catch rates or weather, but also on administrative issues like licensing or enforcement of rules against under-marking in Gross Tonnage. And not only are medium scale fishing operations highly mobile in terms of their trips from home port, they are also flexible in changing their base of operations from one port to another, changing from landing at home port to offloading at processing plants or on transport vessels in remote ports or offloading for air cargo at yet other places.

Fishing vessels from many home ports around the Seram and Maluku Seas (Figures 3.4 to 3.6) operate in WPP 715 as well as in neighbouring WPP. Small scale fleets from the Banggai and Sula Islands as well as from mainland Sulawesi, the Kei Islands and other locations, feed into the same supply lines as the medium scale fishing vessels. Small scale fisheries often supply fish via a network of small local traders and upstream aggregators which prepare larger volumes for sale to processing companies. For example a snapper processor based in Luwuk, Central Sulawsi, receives part of its raw product from the supply network around the local islands while additional supply comes from medium scale operations in WPP 715 and elsewhere. This company has been receiving transports for example from Kema in North Sulawesi, which is the base of a medium scale deep water snapper drop line fishery. That fishery currently lands most of its catches in Kema but operates throughout and beyond the waters of WPP 715, WPP 714 and WPP 718.

In recent years we have observed movement of staging ports but also of processing capacity to remote areas in the east such as Tual in the Kei Islands and the island of Penambulai, East of the Aru Islands in WPP 718. Fish processing capacity in the area of WPP 715 however is still very limited but some is present in Sorong in West Papua. Much of the deep slope snapper and grouper catches by medium scale drop line fleets operating out of Kema currently still ends up in processing facilities outside WPP 715.

Potential IUU issues related to snapper fisheries in and around WPP 715 include the under marking of medium scale vessels to below 30GT, the licensing of the various fleets for specific WPP and the operation of deep slope snapper fishers from remote ports at deep water sites inside Marine Protected Areas throughout this region. Especially the fisheries activity in MPAs needs to be discussed with fishing boat captains and boat owners to prevent issues of supply line "pollution" with IUU fish from thee protected areas.

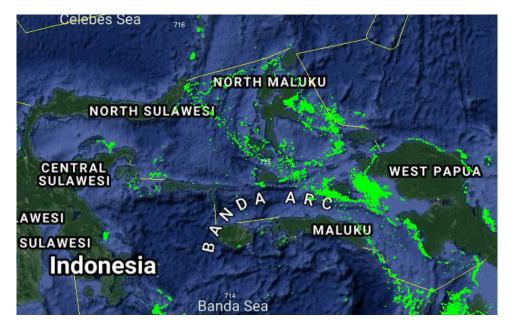


Figure 3.1: Fishing positions of dropliners participating in the CODRS program over the years 2014 - 2019 in WPP 715, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

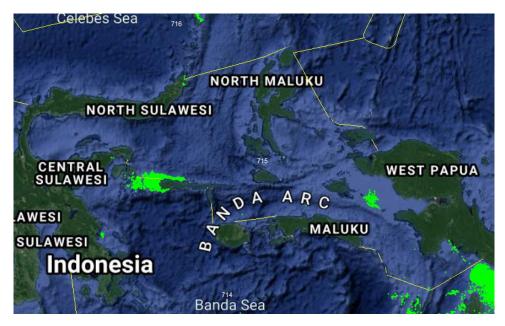


Figure 3.2: Fishing positions of longliners participating in the CODRS program over the years 2014 - 2019 in WPP 715, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

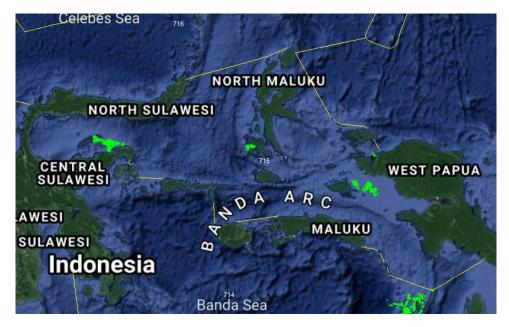


Figure 3.3: Fishing positions of vessels applying more than one gear, participating in the CODRS program over the years 2014 - 2019 in WPP 715, as reported by Spot Trace. Gears used by the vessels in this group are a combination of droplines, longlines, traps, and gillnets. Reported positions during steaming, anchoring, or docking are excluded from this map.

Figure 3.4: A typical snapper fishing boat from Kema, Minahasa Utara, Sulawesi Utara, operating in the Maluku and Seram Seas (WPP 715) and on nearby fishing grounds.

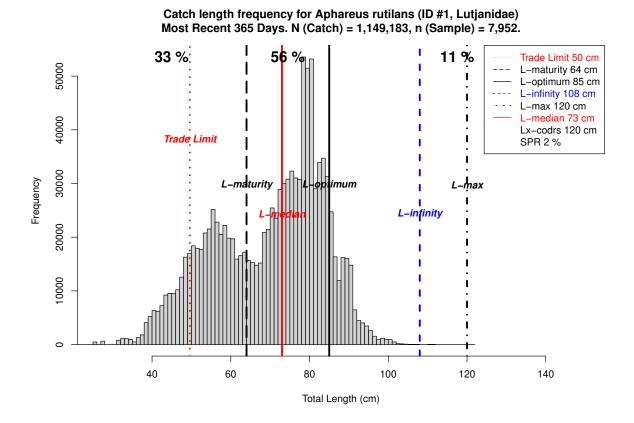


Figure 3.5: A typical snapper fishing boat from Sorong, Papua Barat, operating in the Maluku and Seram Seas (WPP 715) and on nearby fishing grounds.

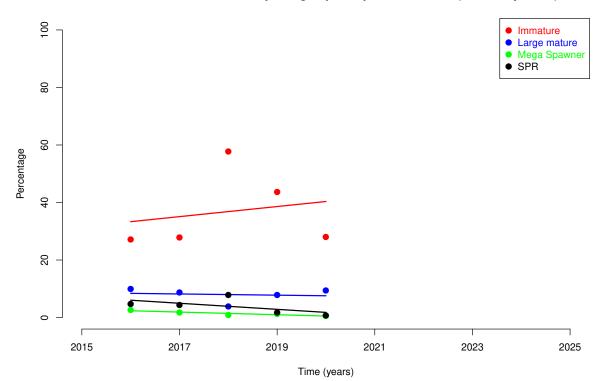


Figure 3.6: A typical small scale snapper fishing fleets from Kasuari, Banggai Laut, Sulawesi Tengah, operating in the Maluku and Seram Seas (WPP 715) and on nearby fishing grounds.

4 Length-based assessments of Top 20 most abundant species in CODRS samples including all years in WPP 715

Trends in relative abundance by size group for Aphareus rutilans (ID #1, Lutjanidae)

37

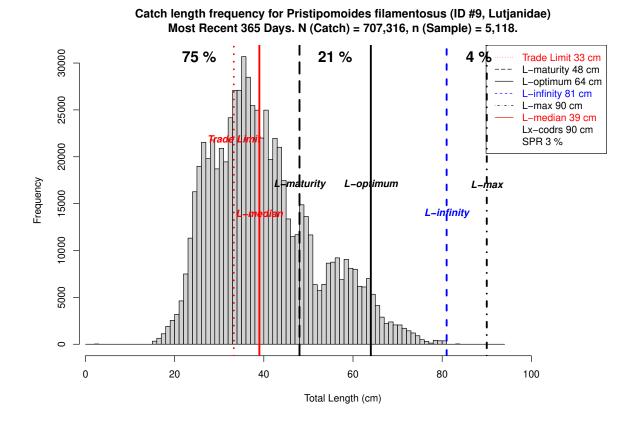
The percentages of Aphareus rutilans (ID #1, Lutjanidae) in most recent 365 days. N (Catch) =1,149,183, n (Sample) = 7,952 Immature (< 64cm): 33% Small mature (>= 64cm, < 85cm): 56% Large mature (>= 85cm): 11% Mega spawner (>= 93.5cm): 1% (subset of large mature fish) Spawning Potential Ratio: 2 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

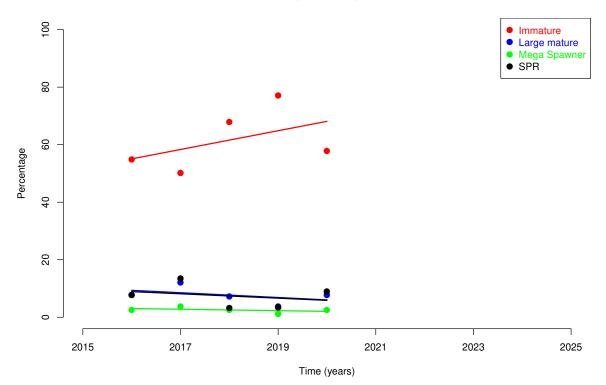
Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Aphareus rutilans (ID #1, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.


% Immature rising over recent years, situation deteriorating. P: 0.742

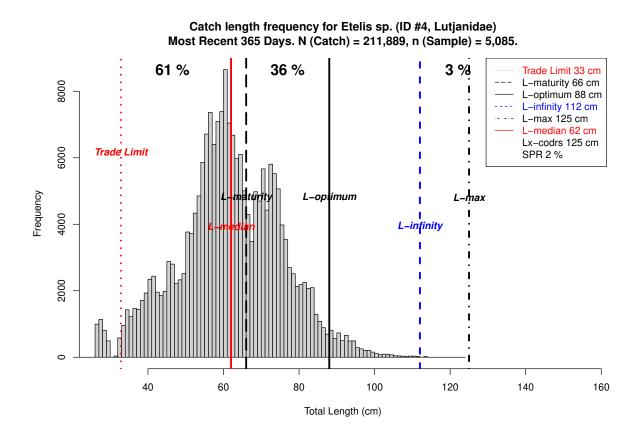
% Large Mature falling over recent years, situation deteriorating. P: 0.826

% Mega Spawner falling over recent years, situation deteriorating. P: 0.045

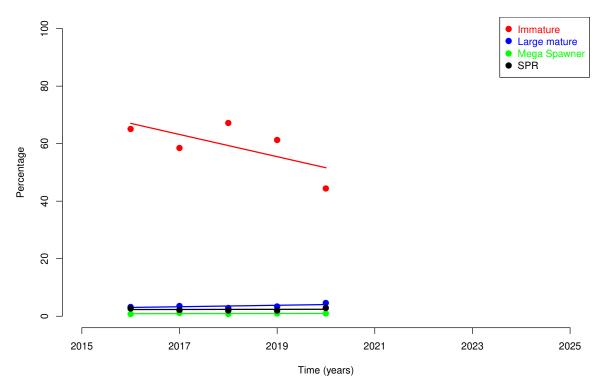
Trends in relative abundance by size group for Pristipomoides filamentosus (ID #9, Lutjanidae)

The percentages of Pristipomoides filamentosus (ID #9, Lutjanidae) in most recent 365 days. N (Catch) =707,316, n (Sample) = 5,118 Immature (< 48cm): 75% Small mature (>= 48cm, < 64cm): 21% Large mature (>= 64cm): 4% Mega spawner (>= 70.4cm): 1% (subset of large mature fish) Spawning Potential Ratio: 3 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides filamentosus (ID #9, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.415
% Large Mature falling over recent years, situation deteriorating. P: 0.457
% Mega Spawner falling over recent years, situation deteriorating. P: 0.471
% SPR falling over recent years, situation deteriorating. P: 0.644

Trends in relative abundance by size group for Etelis sp. (ID #4, Lutjanidae)

The percentages of Etelis sp. (ID #4, Lutjanidae) in most recent 365 days. N (Catch) =211,889, n (Sample) = 5,085 Immature (< 66cm): 61%Small mature (>= 66cm, < 88cm): 36%Large mature (>= 88cm): 3%Mega spawner (>= 96.8cm): 1% (subset of large mature fish) Spawning Potential Ratio: 2%

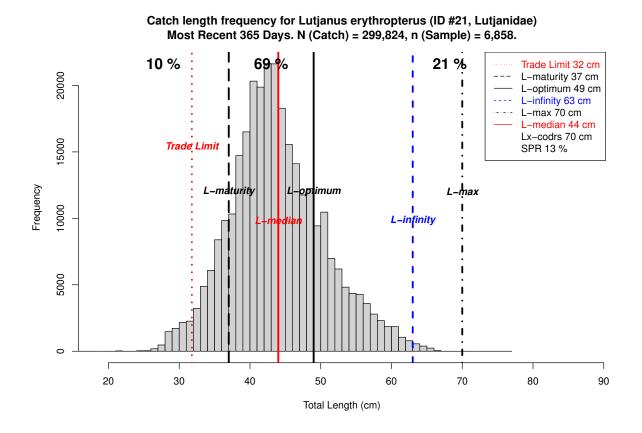
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

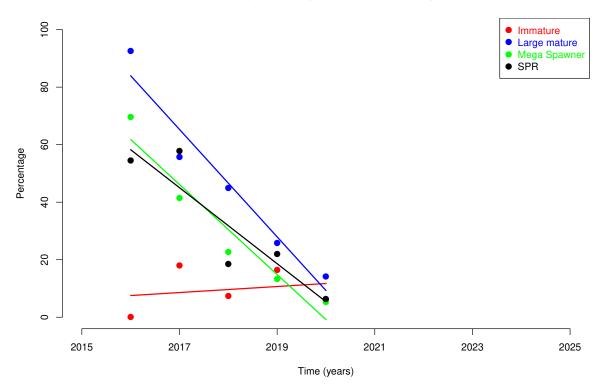
The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Etelis sp. (ID #4, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature falling over recent years, situation improving. P: 0.206


% Large Mature rising over recent years, situation improving. P: 0.261

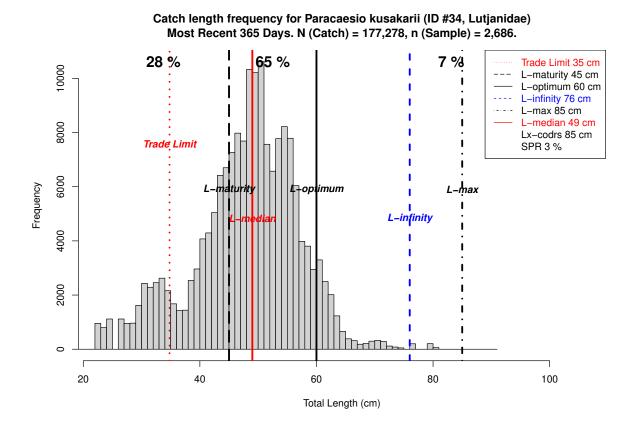
% Mega Spawner no trend over recent years, situation stable. P: 0.729

% SPR no trend over recent years, situation stable. P: 0.905

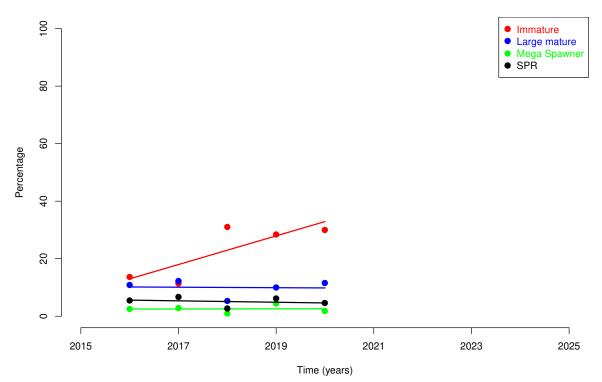
Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae)

The percentages of Lutjanus erythropterus (ID #21, Lutjanidae) in most recent 365 days. N (Catch) =299,824, n (Sample) = 6,858 Immature (< 37cm): 10% Small mature (>= 37cm, < 49cm): 69% Large mature (>= 49cm): 21% Mega spawner (>= 53.9cm): 10% (subset of large mature fish) Spawning Potential Ratio: 13 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

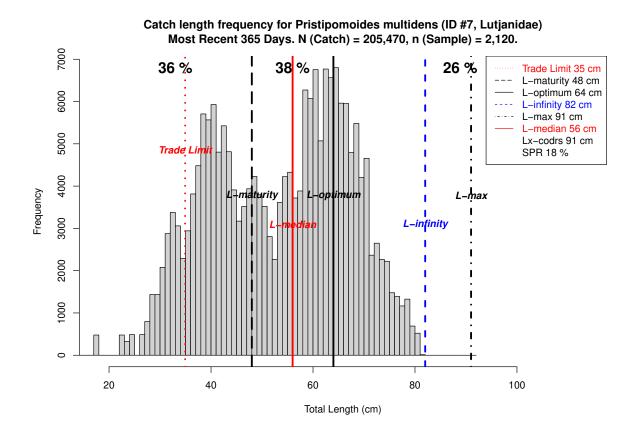
SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.721
% Large Mature falling over recent years, situation deteriorating. P: 0.005
% Mega Spawner falling over recent years, situation deteriorating. P: 0.008
% SPR falling over recent years, situation deteriorating. P: 0.032

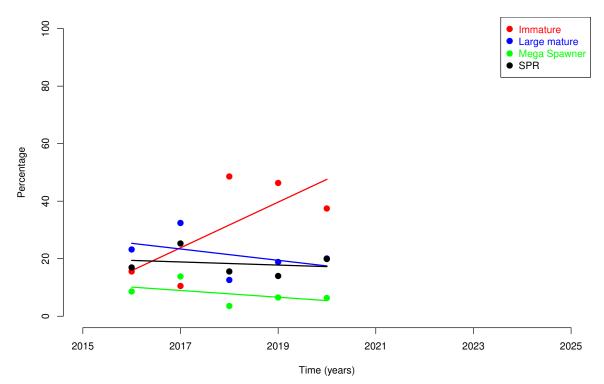
Trends in relative abundance by size group for Paracaesio kusakarii (ID #34, Lutjanidae)

The percentages of Paracaesio kusakarii (ID #34, Lutjanidae) in most recent 365 days. N (Catch) =177,278, n (Sample) = 2,686 Immature (< 45cm): 28% Small mature (>= 45cm, < 60cm): 65% Large mature (>= 60cm): 7% Mega spawner (>= 66cm): 2% (subset of large mature fish) Spawning Potential Ratio: 3 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

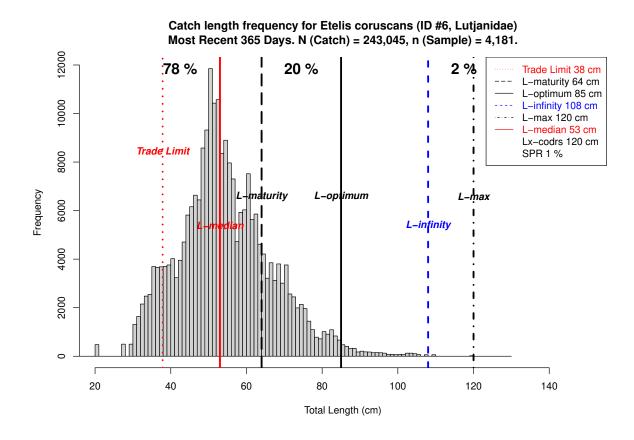
SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Paracaesio kusakarii (ID #34, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.087
% Large Mature no trend over recent years, situation stable. P: 0.939
% Mega Spawner no trend over recent years, situation stable. P: 0.964
% SPR falling over recent years, situation deteriorating. P: 0.682

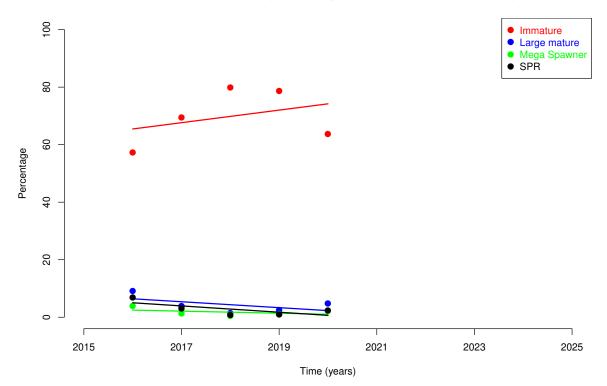
Trends in relative abundance by size group for Pristipomoides multidens (ID #7, Lutjanidae)

The percentages of Pristipomoides multidens (ID #7, Lutjanidae) in most recent 365 days. N (Catch) =205,470, n (Sample) = 2,120 Immature (< 48cm): 36% Small mature (>= 48cm, < 64cm): 38% Large mature (>= 64cm): 26% Mega spawner (>= 70.4cm): 10% (subset of large mature fish) Spawning Potential Ratio: 18 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides multidens (ID #7, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.175
% Large Mature falling over recent years, situation deteriorating. P: 0.470
% Mega Spawner falling over recent years, situation deteriorating. P: 0.402
% SPR falling over recent years, situation deteriorating. P: 0.756

Trends in relative abundance by size group for Etelis coruscans (ID #6, Lutjanidae)

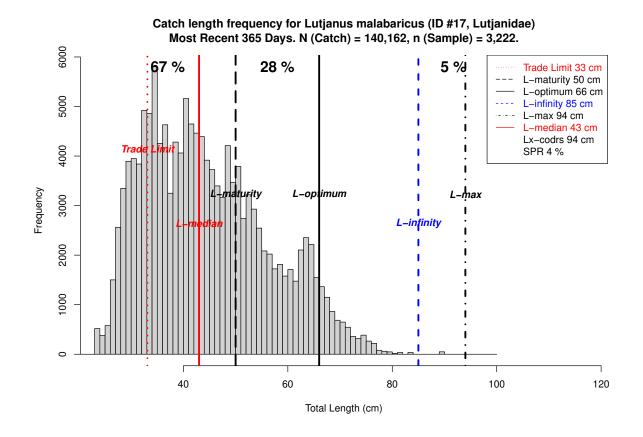
The percentages of Etelis coruscans (ID #6, Lutjanidae) in most recent 365 days. N (Catch) =243,045, n (Sample) = 4,181 Immature (< 64cm): 78% Small mature (>= 64cm, < 85cm): 20% Large mature (>= 85cm): 2% Mega spawner (>= 93.5cm): 1% (subset of large mature fish) Spawning Potential Ratio: 1 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

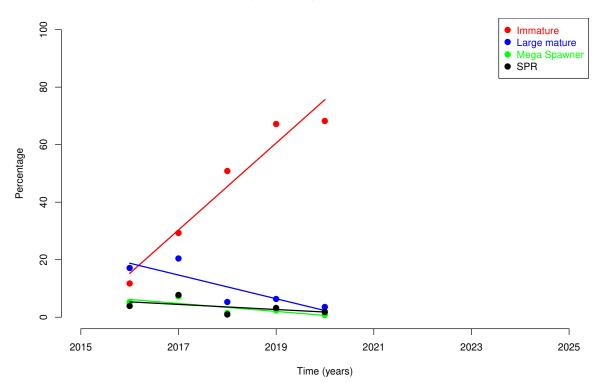
The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Etelis coruscans (ID #6, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.


% Immature rising over recent years, situation deteriorating. P: 0.556

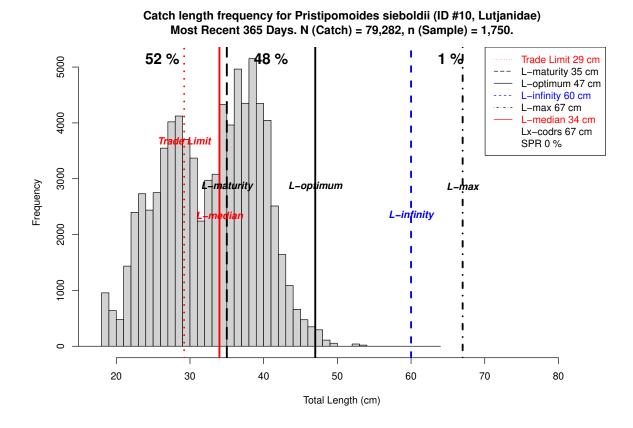
% Large Mature falling over recent years, situation deteriorating. P: 0.342

% Mega Spawner falling over recent years, situation deteriorating. P: 0.466

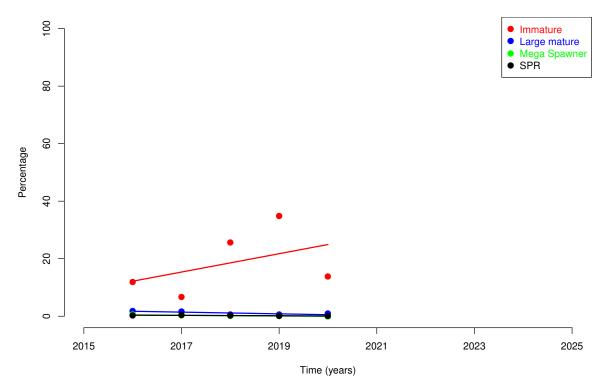
Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae)

The percentages of Lutjanus malabaricus (ID #17, Lutjanidae) in most recent 365 days. N (Catch) =140,162, n (Sample) = 3,222 Immature (< 50cm): 67% Small mature (>= 50cm, < 66cm): 28% Large mature (>= 66cm): 5% Mega spawner (>= 72.6cm): 1% (subset of large mature fish) Spawning Potential Ratio: 4 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

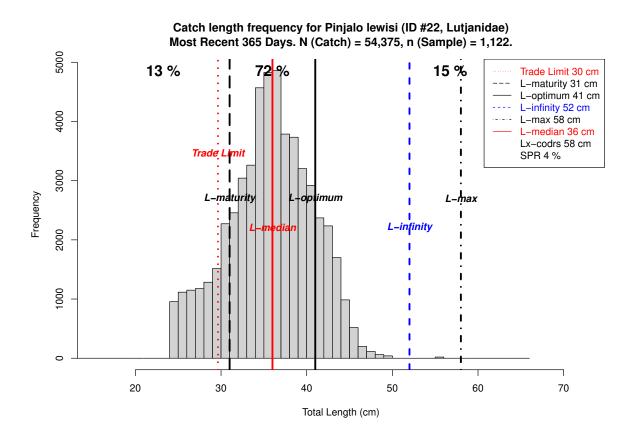
SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.006
% Large Mature falling over recent years, situation deteriorating. P: 0.066
% Mega Spawner falling over recent years, situation deteriorating. P: 0.103
% SPR falling over recent years, situation deteriorating. P: 0.359

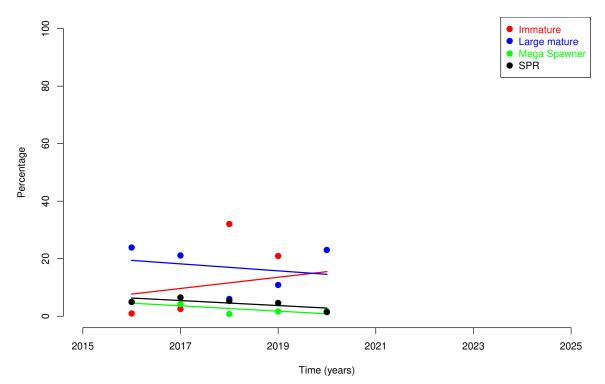
Trends in relative abundance by size group for Pristipomoides sieboldii (ID #10, Lutjanidae)

The percentages of Pristipomoides sieboldii (ID #10, Lutjanidae) in most recent 365 days. N (Catch) =79,282, n (Sample) = 1,750 Immature (< 35cm): 52% Small mature (>= 35cm, < 47cm): 48% Large mature (>= 47cm): 1% Mega spawner (>= 51.7cm): 0% (subset of large mature fish) Spawning Potential Ratio: 0 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides sieboldii (ID #10, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.456
% Large Mature falling over recent years, situation deteriorating. P: 0.144
% Mega Spawner falling over recent years, situation deteriorating. P: 0.038
% SPR no trend over recent years, situation stable. P: 0.042

Trends in relative abundance by size group for Pinjalo lewisi (ID #22, Lutjanidae)

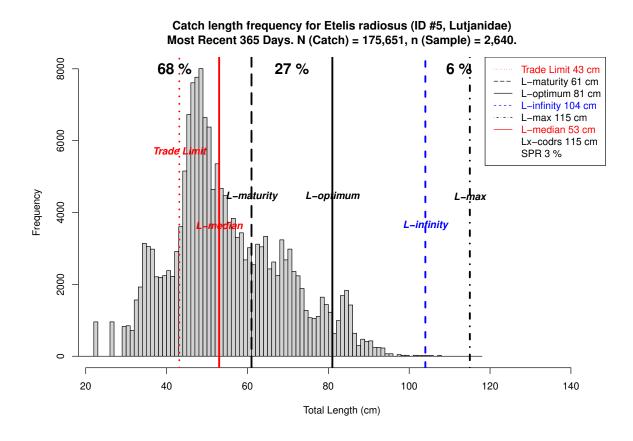
The percentages of Pinjalo lewisi (ID #22, Lutjanidae) in most recent 365 days. N (Catch) =54,375, n (Sample) = 1,122 Immature (< 31cm): 13% Small mature (>= 31cm, < 41cm): 72% Large mature (>= 41cm): 15% Mega spawner (>= 45.1cm): 2% (subset of large mature fish) Spawning Potential Ratio: 4 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

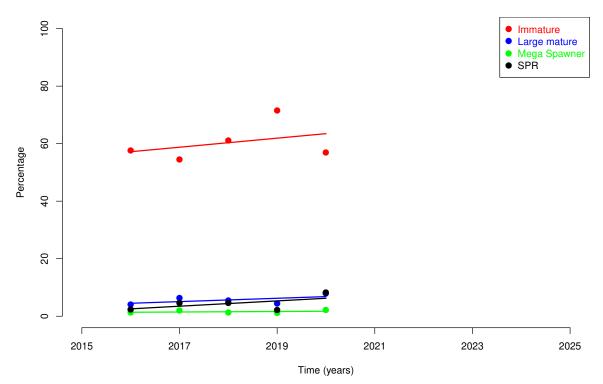
Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pinjalo lewisi (ID #22, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.


% Immature rising over recent years, situation deteriorating. P: 0.725

% Large Mature falling over recent years, situation deteriorating. P: 0.701

% Mega Spawner falling over recent years, situation deteriorating. P: 0.111

Trends in relative abundance by size group for Etelis radiosus (ID #5, Lutjanidae)

The percentages of Etelis radiosus (ID #5, Lutjanidae) in most recent 365 days. N (Catch) =175,651, n (Sample) = 2,640 Immature (< 61cm): 68% Small mature (>= 61cm, < 81cm): 27% Large mature (>= 81cm): 6% Mega spawner (>= 89.1cm): 1% (subset of large mature fish) Spawning Potential Ratio: 3 %

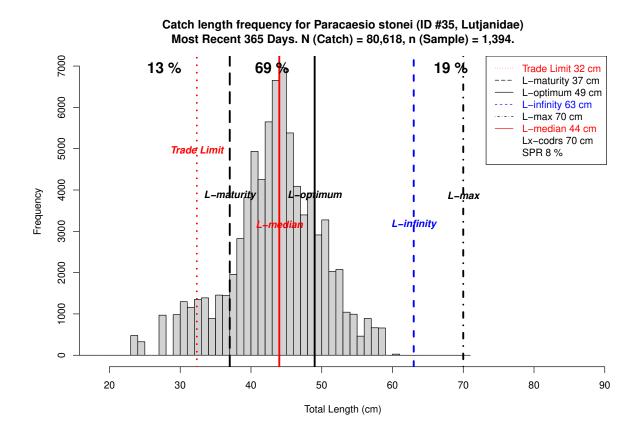
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

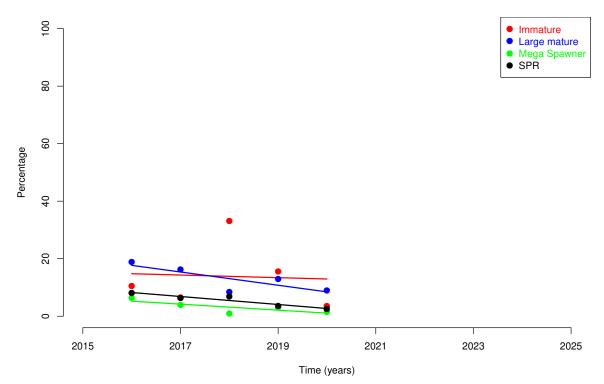
The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Etelis radiosus (ID #5, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature rising over recent years, situation deteriorating. P: 0.537


% Large Mature rising over recent years, situation improving. P: 0.287

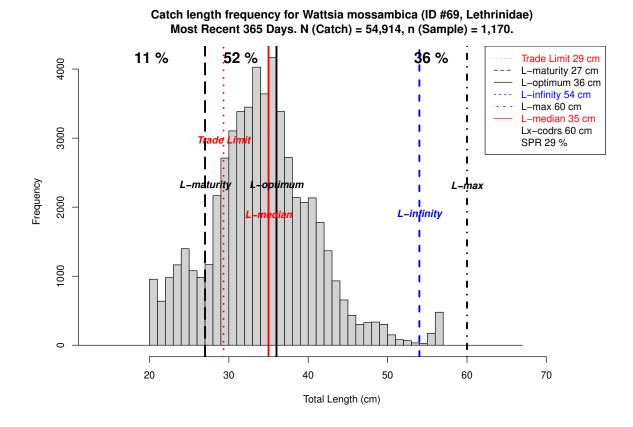
% Mega Spawner no trend over recent years, situation stable. P: 0.612

% SPR rising over recent years, situation improving. P: 0.289

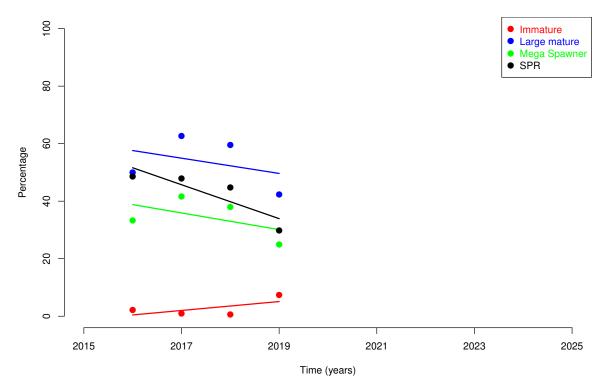
Trends in relative abundance by size group for Paracaesio stonei (ID #35, Lutjanidae)

The percentages of Paracaesio stonei (ID #35, Lutjanidae) in most recent 365 days. N (Catch) =80,618, n (Sample) = 1,394 Immature (< 37cm): 13% Small mature (>= 37cm, < 49cm): 69% Large mature (>= 49cm): 19% Mega spawner (>= 53.9cm): 6% (subset of large mature fish) Spawning Potential Ratio: 8 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

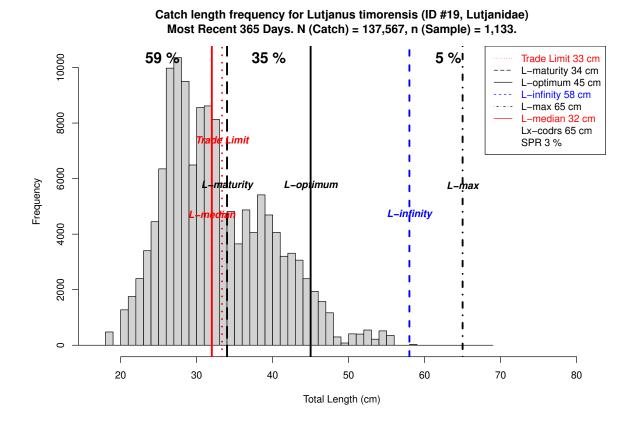
SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Paracaesio stonei (ID #35, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature falling over recent years, situation improving. P: 0.921
% Large Mature falling over recent years, situation deteriorating. P: 0.098
% Mega Spawner falling over recent years, situation deteriorating. P: 0.118
% SPR falling over recent years, situation deteriorating. P: 0.018

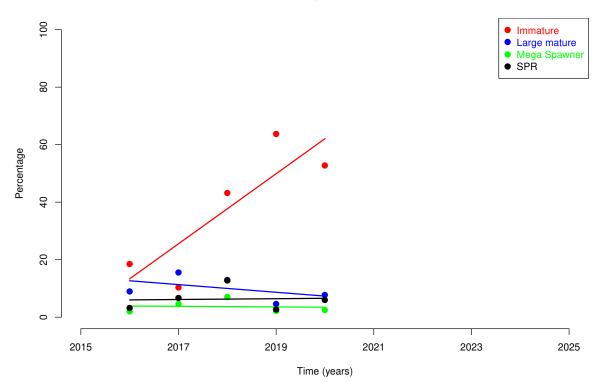
Trends in relative abundance by size group for Wattsia mossambica (ID #69, Lethrinidae)

The percentages of Wattsia mossambica (ID #69, Lethrinidae) in most recent 365 days. N (Catch) =54,914, n (Sample) = 1,170 Immature (< 27cm): 11% Small mature (>= 27cm, < 36cm): 52% Large mature (>= 36cm): 36% Mega spawner (>= 39.6cm): 21% (subset of large mature fish) Spawning Potential Ratio: 29 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium.


The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium.

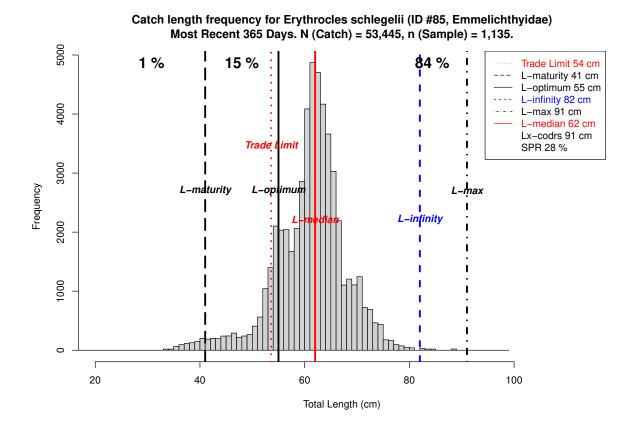
SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.

Trends in relative abundance by size group for Wattsia mossambica (ID #69, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance. % Immature rising over recent years, situation deteriorating. P: 0.363 % Large Mature falling over recent years, situation deteriorating. P: 0.631 % Mega Spawner falling over recent years, situation deteriorating. P: 0.481

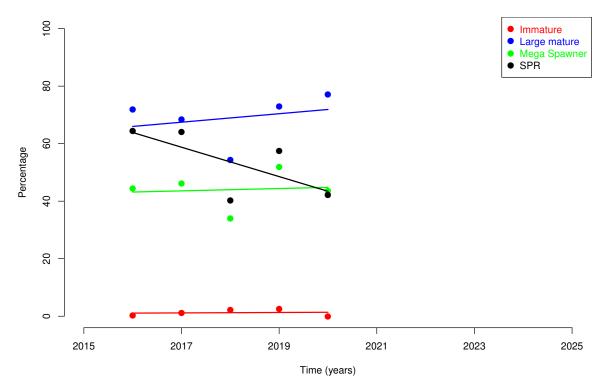
Trends in relative abundance by size group for Lutjanus timorensis (ID #19, Lutjanidae)

The percentages of Lutjanus timorensis (ID #19, Lutjanidae) in most recent 365 days. N (Catch) =137,567, n (Sample) = 1,133 Immature (< 34cm): 59% Small mature (>= 34cm, < 45cm): 35% Large mature (>= 45cm): 5% Mega spawner (>= 49.5cm): 2% (subset of large mature fish) Spawning Potential Ratio: 3 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

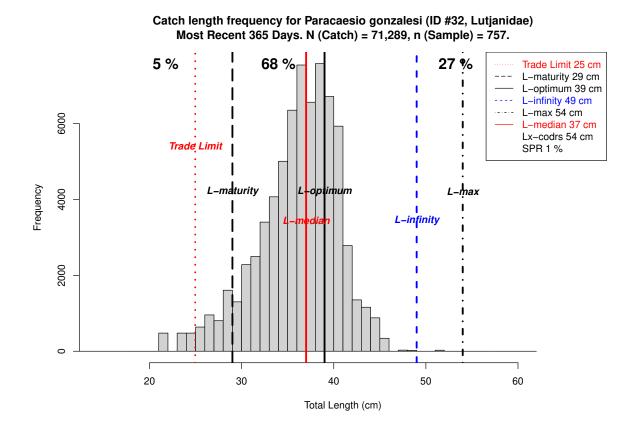
SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus timorensis (ID #19, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.067
% Large Mature falling over recent years, situation deteriorating. P: 0.404
% Mega Spawner falling over recent years, situation deteriorating. P: 0.902
% SPR rising over recent years, situation improving. P: 0.931

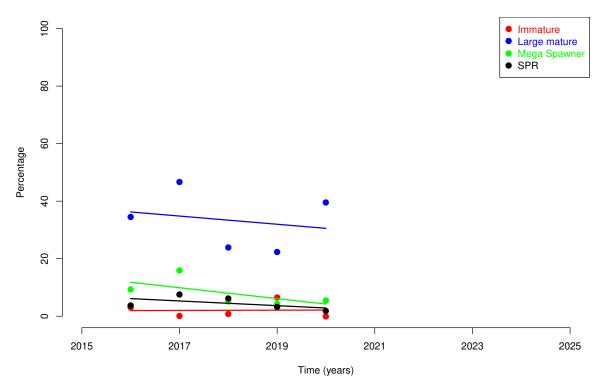
Trends in relative abundance by size group for Erythrocles schlegelii (ID #85, Emmelichthyidae)

The percentages of Erythrocles schlegelii (ID #85, Emmelichthyidae) in most recent 365 days. N (Catch) =53,445, n (Sample) = 1,135 Immature (< 41cm): 1% Small mature (>= 41cm, < 55cm): 15% Large mature (>= 55cm): 84% Mega spawner (>= 60.5cm): 64% (subset of large mature fish) Spawning Potential Ratio: 28 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.


More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low.

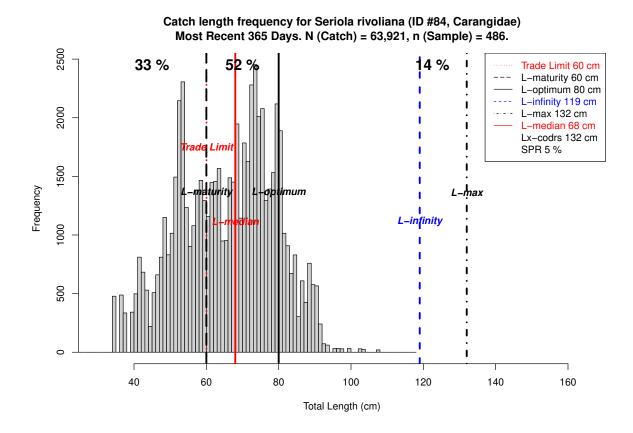
SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.

Trends in relative abundance by size group for Erythrocles schlegelii (ID #85, Emmelichthyidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature no trend over recent years, situation stable. P: 0.865
% Large Mature rising over recent years, situation improving. P: 0.664
% Mega Spawner rising over recent years, situation improving. P: 0.873
% SPR falling over recent years, situation deteriorating. P: 0.196

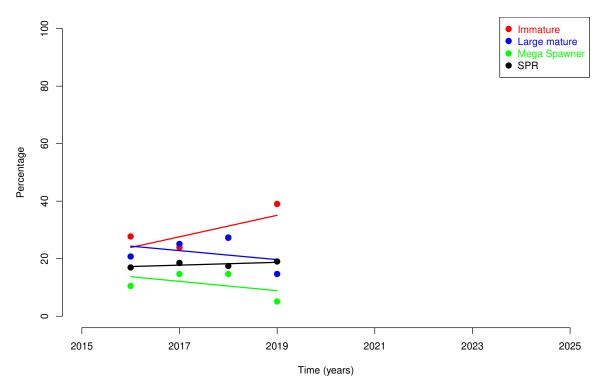
Trends in relative abundance by size group for Paracaesio gonzalesi (ID #32, Lutjanidae)

The percentages of Paracaesio gonzalesi (ID #32, Lutjanidae) in most recent 365 days. N (Catch) =71,289, n (Sample) = 757 Immature (< 29cm): 5% Small mature (>= 29cm, < 39cm): 68% Large mature (>= 39cm): 27% Mega spawner (>= 42.9cm): 5% (subset of large mature fish) Spawning Potential Ratio: 1 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

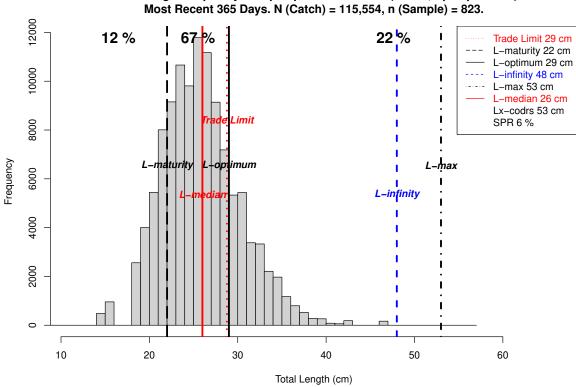
SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Paracaesio gonzalesi (ID #32, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature no trend over recent years, situation stable. P: 0.967
% Large Mature falling over recent years, situation deteriorating. P: 0.724
% Mega Spawner falling over recent years, situation deteriorating. P: 0.258
% SPR falling over recent years, situation deteriorating. P: 0.329

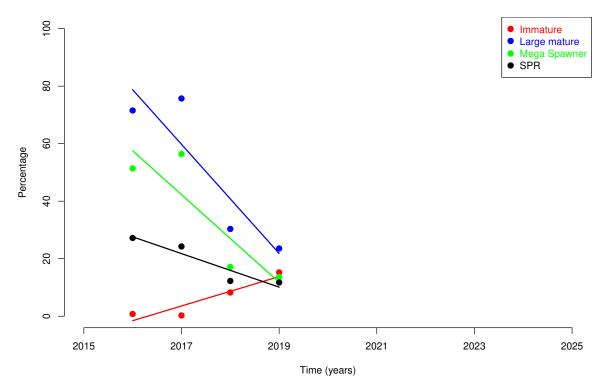
Trends in relative abundance by size group for Seriola rivoliana (ID #84, Carangidae)

The percentages of Seriola rivoliana (ID #84, Carangidae) in most recent 365 days. N (Catch) =63,921, n (Sample) = 486 Immature (< 60cm): 33% Small mature (>= 60cm, < 80cm): 52% Large mature (>= 80cm): 14% Mega spawner (>= 88cm): 5% (subset of large mature fish) Spawning Potential Ratio: 5 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

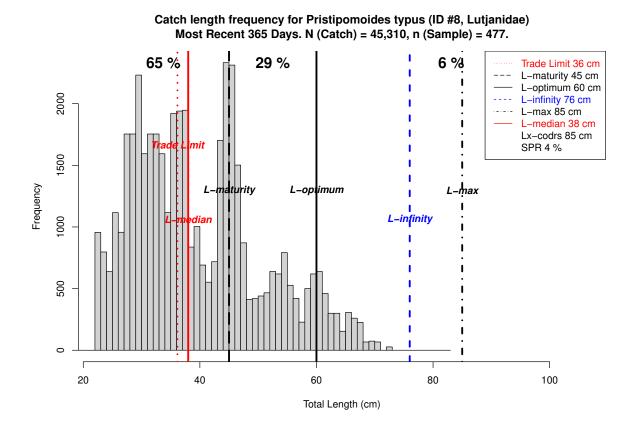
SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Seriola rivoliana (ID #84, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.269
% Large Mature falling over recent years, situation deteriorating. P: 0.638
% Mega Spawner falling over recent years, situation deteriorating. P: 0.536
% SPR rising over recent years, situation improving. P: 0.282

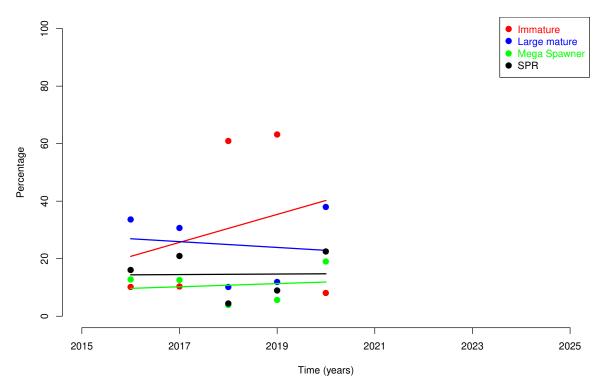
Trends in relative abundance by size group for Epinephelus areolatus (ID #45, Epinephelidae)

Catch length frequency for Epinephelus areolatus (ID #45, Epinephelidae) Most Recent 365 Days. N (Catch) = 115,554, n (Sample) = 823. The percentages of Epinephelus areolatus (ID #45, Epinephelidae) in most recent 365 days. N (Catch) =115,554, n (Sample) = 823 Immature (< 22cm): 12% Small mature (>= 22cm, < 29cm): 67% Large mature (>= 29cm): 22% Mega spawner (>= 31.9cm): 12% (subset of large mature fish) Spawning Potential Ratio: 6 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

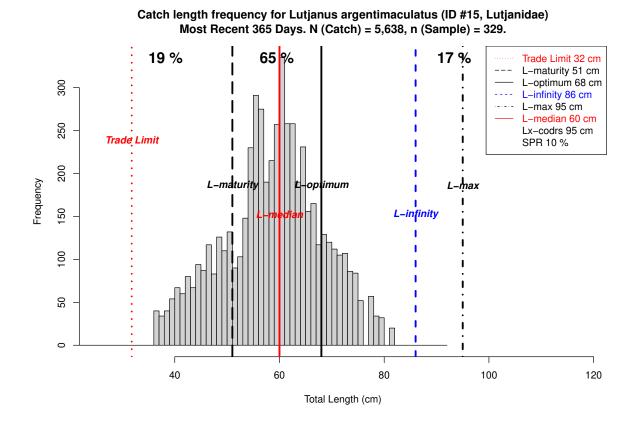
SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Epinephelus areolatus (ID #45, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance. % Immature rising over recent years, situation deteriorating. P: 0.063 % Large Mature falling over recent years, situation deteriorating. P: 0.099 % Mega Spawner falling over recent years, situation deteriorating. P: 0.120 % SPR falling over recent years, situation deteriorating. P: 0.061

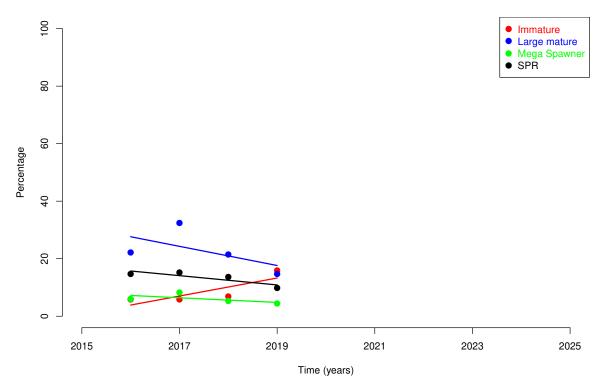
Trends in relative abundance by size group for Pristipomoides typus (ID #8, Lutjanidae)

The percentages of Pristipomoides typus (ID #8, Lutjanidae) in most recent 365 days. N (Catch) =45,310, n (Sample) = 477 Immature (< 45cm): 65% Small mature (>= 45cm, < 60cm): 29% Large mature (>= 60cm): 6% Mega spawner (>= 66cm): 2% (subset of large mature fish) Spawning Potential Ratio: 4 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides typus (ID #8, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.664
% Large Mature falling over recent years, situation deteriorating. P: 0.843
% Mega Spawner rising over recent years, situation improving. P: 0.819
% SPR no trend over recent years, situation stable. P: 0.976

Trends in relative abundance by size group for Lutjanus argentimaculatus (ID #15, Lutjanidae)

The percentages of Lutjanus argentimaculatus (ID #15, Lutjanidae) in most recent 365 days. N (Catch) =5,638, n (Sample) = 329 Immature (< 51cm): 19% Small mature (>= 51cm, < 68cm): 65% Large mature (>= 68cm): 17% Mega spawner (>= 74.8cm): 5% (subset of large mature fish) Spawning Potential Ratio: 10 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus argentimaculatus (ID #15, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.169
% Large Mature falling over recent years, situation deteriorating. P: 0.411
% Mega Spawner falling over recent years, situation deteriorating. P: 0.380
% SPR falling over recent years, situation deteriorating. P: 0.140

Rank	#ID	Species	Trade Limit	Immature	Exploitation	Mega Spawn	SPR
			Prop. Lmat	%	%	%	%
1	1	Aphareus rutilans	0.78	33	89	1	2
2	9	Pristipomoides filamentosus	0.69	75	96	1	3
3	4	Etelis sp.	0.50	61	97	1	2
4	21	Lutjanus erythropterus	0.86	10	79	10	13
5	34	Paracaesio kusakarii	0.77	28	93	2	3
6	7	Pristipomoides multidens	0.73	36	74	10	18
7	6	Etelis coruscans	0.59	78	98	1	1
8	17	Lutjanus malabaricus	0.66	67	95	1	4
9	10	Pristipomoides sieboldii	0.83	52	99	0	0
10	22	Pinjalo lewisi	0.96	13	85	2	4
11	5	Etelis radiosus	0.71	68	94	1	3
12	35	Paracaesio stonei	0.87	13	81	6	8
13	69	Wattsia mossambica	1.09	11	64	21	29
14	19	Lutjanus timorensis	0.98	59	95	2	3
15	85	Erythrocles schlegelii	1.31	1	16	64	28
16	32	Paracaesio gonzalesi	0.86	5	73	5	1
17	84	Seriola rivoliana	1.00	33	86	5	$\overline{5}$
18	45	Epinephelus areolatus	1.31	12	78	12	$\ddot{6}$
19	8	Pristipomoides typus	0.80	65	94	2	4
20	15	Lutjanus argentimaculatus	0.62	19	83	5	10
21	80	Caranx sexfasciatus	1.24	5	31	54	63
21	82	Elagatis bipinnulata	1.13	0	31	48	70
22	75	Carangoides chrysophrys	1.17	$\frac{1}{2}$	24	57	28
20 24	70	Gymnocranius grandoculis	0.85	10	52	33	26
$\frac{21}{25}$	81	Caranx tille	1.30	0	43	55	near 100
$\frac{26}{26}$	33	Paracaesio xanthura	0.98	0	34	33	21
$\frac{20}{27}$	33 87	Dentex carpenteri	1.38	0	3	91	87
$\frac{21}{28}$	88	Glaucosoma buergeri	0.95	0	15	57	55
$\frac{20}{29}$	43	Epinephelus morrhua	0.33 0.83	11	65	18	$\frac{35}{24}$
$\frac{29}{30}$	43 64	Lethrinus laticaudis	$0.83 \\ 0.94$	1	$\frac{00}{21}$	18 71	near 100
$30 \\ 31$	04 77	Caranx bucculentus	1.47	4	43	43	near 100
32	$\frac{1}{27}$		1.47	$\frac{4}{37}$	43 99	43 1	0
32 33	$\frac{27}{20}$	Lutjanus vitta		37 32	99 96	1	0
		Lutjanus gibbus	1.07				
34 25	54	Epinephelus stictus	1.28	0	1	98 7	62
35 26	2	Aprion virescens	0.81	53	82	7	12
36 27	67 02	Lethrinus amboinensis	1.00	-	63	18	11
37	92	Cookeolus japonicus	1.00	unknown	unknown	unknown	unknown
38	41	Epinephelus latifasciatus	1.00	1	40	24	18
39	23	Pinjalo pinjalo		unknown	unknown	unknown	unknown
41	51	Epinephelus chlorostigma		unknown	unknown	unknown	unknown
42	18	Lutjanus sebae		unknown	unknown	unknown	unknown
43	16	Lutjanus bohar	0.67	75	98 5 0	0	6
44	90	Diagramma pictum	1.02	,11	58	29	34
45	66	Lethrinus olivaceus		unknown	unknown	unknown	unknown
46	42	Epinephelus radiatus		unknown	unknown	unknown	unknown
47	30	Lipocheilus carnolabrum	0.73	5	52	18	22
48	24	Lutjanus johnii		unknown	unknown	unknown	unknown
49	63	Lethrinus lentjan	1.05	0	27	41	39
50	28	Lutjanus boutton	1.20	3	65	12	12

Table 4.1: Values of indicators over the most recent 365 days in length-based assessments for the top 50 most abundant species by total CODRS samples in WPP 715.

Rank	#ID	Species	Trade Limit	Immature	Exploitation	Mega Spawn	SPR
1	1 1	Aphareus rutilans	high	high	high	high	high
2	9	Pristipomoides filamentosus	high	high	high	high	high
3	4	Etelis sp.	high	high	high	high	high
3 4	$\frac{4}{21}$	Lutjanus erythropterus	high	medium	high	high	high
5	$\frac{21}{34}$	Paracaesio kusakarii		medium	high		
	$\frac{54}{7}$		high biab			high biab	high bigh
6		Pristipomoides multidens	high	high	high	high	high
7	6	Etelis coruscans	high	high	high	high	high
8	17	Lutjanus malabaricus	high	high	high	high	high
9	10	Pristipomoides sieboldii	high	high	high	high	high
10	22	Pinjalo lewisi	\mathbf{medium}	medium	high	high	high
11	5	Etelis radiosus	high	high	high	high	high
12	35	Paracaesio stonei	high	medium	high	high	high
13	69	Wattsia mossambica	medium	medium	\mathbf{medium}	\mathbf{medium}	medium
14	19	Lutjanus timorensis	medium	high	high	high	high
15	85	Erythrocles schlegelii	low	low	low	low	mediur
16	32	Paracaesio gonzalesi	\mathbf{high}	low	\mathbf{high}	\mathbf{high}	high
17	84	Seriola rivoliana	\mathbf{medium}	\mathbf{high}	\mathbf{high}	high	high
18	45	Epinephelus areolatus	low	\mathbf{medium}	high	high	\mathbf{high}
19	8	Pristipomoides typus	\mathbf{high}	\mathbf{high}	high	high	\mathbf{high}
20	15	Lutjanus argentimaculatus	high	\mathbf{medium}	high	high	\mathbf{high}
21	80	Caranx sexfasciatus	low	low	low	low	low
22	82	Elagatis bipinnulata	low	\mathbf{low}	low	low	low
23	75	Carangoides chrysophrys	low	low	low	low	mediur
24	70	Gymnocranius grandoculis	high	\mathbf{medium}	\mathbf{medium}	low	mediur
25	81	Caranx tille	low	low	low	low	low
26	33	Paracaesio xanthura	\mathbf{medium}	low	low	low	high
27	87	Dentex carpenteri	low	low	low	low	low
28	88	Glaucosoma buergeri	\mathbf{medium}	low	low	low	low
29	43	Epinephelus morrhua	high	medium	medium	high	high
30	64	Lethrinus laticaudis	medium	low	low	low	low
31	77	Caranx bucculentus	low	low	low	low	low
32	27	Lutjanus vitta	low	high	high	high	high
33	20	Lutjanus gibbus	medium	high	high	high	high
34	54	Epinephelus stictus	low	low	low	low	low
35	2	Aprion virescens	high	high	high	high	high
36	67	Lethrinus amboinensis	medium	low	medium	high	high
37	92	Cookeolus japonicus	unknown	unknown	unknown	unknown	unknow
38	$\frac{32}{41}$	Epinephelus latifasciatus	medium	low	low	medium	high
$\frac{39}{39}$	23		unknown	unknown	unknown	unknown	unknow
39 41	$\frac{23}{51}$	Pinjalo pinjalo Eninopholug chlorostigma	unknown	unknown	unknown	unknown	unknow
		Epinephelus chlorostigma					
42 42	18 16	Lutjanus sebae	unknown bigh	unknown	unknown bigh	unknown	unknow
43	16	Lutjanus bohar	high	high	high	high	high
44	90 66	Diagramma pictum	medium	medium	medium	medium	mediur
45	66	Lethrinus olivaceus	unknown	unknown	unknown	unknown	unknow
46	42	Epinephelus radiatus	unknown	unknown	unknown	unknown	unknow
47	30	Lipocheilus carnolabrum	high	low	medium	high	high
48	24	Lutjanus johnii	unknown	unknown	unknown	unknown	unknow
49	63	Lethrinus lentjan	medium	low	low	low	mediu
50	28	Lutjanus boutton	\mathbf{low}	\mathbf{low}	high	high	high

Table 4.2: Risk levels in the fisheries over the most recent 365 days
for the top 50 most abundant species by total CODRS samples in WPP 715.

Rank		Species	% Immature	% Large Mature	% Mega Spawner	% SPR
1	1	Aphareus rutilans	deteriorating	deteriorating	deteriorating	deteriorating
2	9	Pristipomoides filamentosus	U	deteriorating	deteriorating	deteriorating
3	4	Etelis sp.	improving	improving	\mathbf{stable}	\mathbf{stable}
4	21	Lutjanus erythropterus	deteriorating	deteriorating	deteriorating	deteriorating
5	34	Paracaesio kusakarii	deteriorating	\mathbf{stable}	\mathbf{stable}	deteriorating
6	7	Pristipomoides multidens	deteriorating	deteriorating	deteriorating	deteriorating
7	6	Etelis coruscans	deteriorating	deteriorating	deteriorating	deteriorating
8	17	Lutjanus malabaricus	deteriorating	deteriorating	deteriorating	deteriorating
9	10	Pristipomoides sieboldii	deteriorating	deteriorating	deteriorating	\mathbf{stable}
10	22	Pinjalo lewisi	deteriorating	deteriorating	deteriorating	deteriorating
11	5	Etelis radiosus	deteriorating	improving	${f stable}$	improving
12	35	Paracaesio stonei	improving	deteriorating	deteriorating	deteriorating
13	69	Wattsia mossambica	deteriorating	deteriorating	deteriorating	deteriorating
14	19	Lutjanus timorensis	deteriorating	deteriorating	deteriorating	improving
15	85	Erythrocles schlegelii	\mathbf{stable}	improving	improving	deteriorating
16	32	Paracaesio gonzalesi	\mathbf{stable}	deteriorating	deteriorating	deteriorating
17	84	Seriola rivoliana	deteriorating	deteriorating	deteriorating	improving
18	45	Epinephelus areolatus	deteriorating	deteriorating	deteriorating	deteriorating
19	8	Pristipomoides typus	deteriorating	deteriorating	improving	\mathbf{stable}
20	15	Lutjanus argentimaculatus	deteriorating	deteriorating	deteriorating	deteriorating
21	80	Caranx sexfasciatus	deteriorating	deteriorating	deteriorating	deteriorating
22	82	Elagatis bipinnulata	improving	deteriorating	deteriorating	deteriorating
23	75	Carangoides chrysophrys	deteriorating	deteriorating	deteriorating	deteriorating
24	70	Gymnocranius grandoculis	deteriorating	deteriorating	deteriorating	deteriorating
25	81	Caranx tille	\mathbf{stable}	deteriorating	deteriorating	deteriorating
26	33	Paracaesio xanthura	deteriorating	deteriorating	deteriorating	deteriorating
27	87	Dentex carpenteri	\mathbf{stable}	improving	\mathbf{stable}	deteriorating
28	88	Glaucosoma buergeri	improving	improving	deteriorating	improving
29	43	Epinephelus morrhua	deteriorating	\mathbf{stable}	improving	deteriorating
30	64	Lethrinus laticaudis	deteriorating	deteriorating	deteriorating	\mathbf{stable}
31	77	Caranx bucculentus	deteriorating	deteriorating	deteriorating	improving
32	27	Lutjanus vitta	unknown	unknown	unknown	unknown
33	20	Lutjanus gibbus	deteriorating	deteriorating	deteriorating	\mathbf{stable}
34	54	Epinephelus stictus	\mathbf{stable}	improving	improving	improving
35	2	Aprion virescens	deteriorating	deteriorating	deteriorating	improving
36	67	Lethrinus amboinensis	deteriorating	deteriorating	deteriorating	deteriorating
37	92	Cookeolus japonicus	improving	deteriorating	deteriorating	deteriorating
38	41	Epinephelus latifasciatus	deteriorating	deteriorating	deteriorating	deteriorating
39	23	Pinjalo pinjalo	unknown	unknown	unknown	$\mathbf{unknown}$
41	51	Epinephelus chlorostigma	improving	deteriorating	deteriorating	improving
42	18	Lutjanus sebae	deteriorating	deteriorating	deteriorating	deteriorating
43	16	Lutjanus bohar	deteriorating	deteriorating	deteriorating	deteriorating
44	90	Diagramma pictum	unknown	unknown	unknown	unknown
45	66	Lethrinus olivaceus	deteriorating	deteriorating	deteriorating	deteriorating
46	42	Epinephelus radiatus	deteriorating	stable	stable	improving
47	30	Lipocheilus carnolabrum	deteriorating	deteriorating	deteriorating	deteriorating
48	24	Lutjanus johnii	unknown	unknown	unknown	unknown
49	63	Lethrinus lentjan	unknown	unknown	unknown	unknown
50	28	Lutjanus boutton	unknown	unknown	unknown	unknown

Table 4.3: Trends during recent years for SPR and relative abundance by size group for the top 50 most abundant species by total CODRS samples in WPP 715.

5 Discussion and conclusions

Deepwater drop line fishing for snappers, groupers and emperors occurs throughout WPP 715 on deep slopes and seamounts at depths between 50 and 500 meters. Bottom long line fishing (targeting a similar species spectrum) occurs in a few areas with a flatter bottom profile at depths ranging from 50 to 150 meters in the Papua Bird's Head region. WPP 715 consists for a large part of deep waters, with very steep slopes around the islands, reefs and seamounts. This makes the area mostly suitable for drop line fishing around those structures. Bottom long line fishing is more common in areas with larger shelve habitats and relatively shallower slopes, such as in the South Eastern parts of the Raja Ampat archipelago and towards the coast of West Papua.

The deep water drop line fishery for snappers, groupers and emperors is a fairly clean fishery when it comes to the species spectrum in the catch (Table 5.7 and Table 5.8), even though it is much more species-rich then sometimes assumed, also within the "snapper" category, which forms the main target group. The bottom long line fishery is characterized by a more substantial by-catch of small sharks, cobia and trevallies, which are currently not preferred by the processors who are buying the target species. Drop line fisheries are characterized by a very low impact on habitat at the fishing grounds, whereas some more impact from entanglement can be expected from bottom long lines. Nothing near the habitat impact from destructive dragging gears is evident from either one of the two deep hook and line fisheries. However, due to limited available habitat (fishing grounds) and predictable locations of fish concentrations, combined with a very high fishing effort on the best known fishing grounds, as well as the targeting of juveniles, there is a high potential for overfishing in the deep slope fisheries.

Based on available length frequencies of multi-species snapper, grouper and emperor catches from WPP 715, the risks of overfishing are high (Table 4.1 and Table 4.2) and SPR is dangerously low (Table 5.1) for most of the larger snappers which are common on deep slopes in this fisheries management area. The deep water snapper feeding aggregations occur at predictable and well known locations and these large snappers are therefore among the most vulnerable species in these fisheries. Fishing mortality seems to be unacceptably high while the catches of these species include large percentages of relatively small and immature specimen. For many species of snappers, sizes are consistently targeted well below the size where these fish reach maturity. Bigger specimen of the largest snapper species are becoming extremely rare in Indonesia.

Fishing effort and fishing mortality have been too high in recent years in WPP 715 and the situation is currently not improving. Time trends for the top 10 snapper species (ranked by abundance) either show continued decline of the stocks or unclear patterns, judging from trends in size based indicators (Table 4.3). Those trends in length based indicators can also be compared with trends in CpUE by gear types and boat size category (Tables 5.2 to 5.6), although fishing at aggregating sites (including bottom FADs) may be masking the direct effect on CpUE. Overall we are currently looking at a high risk of overfishing for all major snapper species in WPP 715, combined with a worrisome trend of deterioration in these snapper stocks, based on the size based stock assessments from the bottom long line fisheries.

Interestingly though, the groupers seem to be less vulnerable to the deep slope hook and line fisheries than the snappers are. Impact by the deep slope drop line and long line fisheries on grouper populations is limited compared to the snappers. This may be because most groupers are staying closer to high rugosity bottom habitat, which is avoided by long line vessels due to risk of entanglement, while drop line fishers are targeting schooling snappers that are hovering higher in the water column, above the grouper habitat. Fishing mortality (from deep slope hook and line fisheries) in large mature groupers seems to be considerably lower than what we see for the snappers.

Groupers generally mature as females at a size relative to their maximum size which is lower than for snappers. This strategy enables them to reproduce before they are being caught, although fecundity is still relatively low at sizes below the optimum size for harvesting. Fecundity for the population as a whole peaks at the optimum size for each species, and this is also the size around which sex change from females to males happens in groupers. Separate analysis of all grouper data shows that most groupers have already reached or passed their optimum size (and the size where sex change takes place) when they are caught by the deep slope hook and line fisheries.

For those grouper species which spend all or most of their life cycle in these habitats, the relatively low vulnerability to the deep slope hook and line fisheries is very good news. For other grouper species which spend major parts of their life cycle in shallower habitats, like coral reefs or mangroves or estuaries for example, the reality is that their populations in general are in extremely bad shape due to excessive fishing pressure by small scale fisheries in those shallower habitats. This situation is also evident for a few snapper species such as for example the mangrove jack.

Overall there is a clear scope for some straightforward fisheries improvements supported by relatively uncomplicated fisheries management policies and regulations. Our first recommendation for industry led fisheries improvements is for traders to adjust trading limits (size at which fishers receive premium prices) to the length at maturity for all target species. For a number of important species these trade limits urgently need adjustments upwards, with government support through regulations on minimum allowable sizes. Many of the deep water snappers are traded at sizes that are too small, and this impairs sustainability.

Adjustment upwards of trading limits towards the size at first maturity would be a straightforward improvement in these fisheries. By refusing undersized fish in high value supply lines, the market can provide incentives for captains of catcher boats to target larger specimen. The captains can certainly do this by using their day to day experiences, selecting locations, fishing depths, habitat types, hook sizes, etc. Literature data shows habitat separation between size groups in many species, as well as size selectivity of specific hook sizes. Captains know about this from experience.

Market preference for small size classes ("plate size" or "golden size") could potentially be adjusted by awareness campaigns that clarify to the public that such sizes for many species actually represent immature juveniles and targeting these specifically will impair fisheries sustainability. Filleting techniques for larger fish can be adjusted to relatively thin slicing under an angle to produce "natural cuts" which are similar to "plate size" fillets but lacking the skin. This may produce a higher value product than the currently more common cutting of thick "portions" from large fillets, which are less preferred in some markets. A switch to "natural cut" fillets from larger fish could be combined with price incentives for larger fish by fishing companies, which could lead to a more sustainable trade especially if supported by size based policies and regulation like minimum sizes. Some of the less well known snapper species (e.g. Paracaesio spp.) are actually good quality fish that are caught in great quantities, but are under-valued in the trade as they are simply not known by high end buyers and lack the valuable color red. Awareness campaigns (including tasting tests) on the quality of these species could help to support fishing companies obtain better prices for these species and offset with that some of the temporary losses that may occur when undersized target species will be actively avoided. As skin less fillets these Paracaesio species will differ from other snapper species mostly just by name.

Besides size selectivity, fishing effort is a very important factor in resulting overall catch and size frequency of the catch. All major target snappers show a rapid decline in numbers above the size where the species becomes most vulnerable to the fisheries. This rapid decline in numbers, as visible in the LFD graphs, indicates a high fishing mortality for the vulnerable size classes. Fishing effort is probably too high to be sustainable and many species seem to be at risk in the deep drop and long line fisheries, judging from a number of indicators as presented in this report. At present these fisheries show clear signs of over-exploitation in WPP 715, even though we can see some differences with other fisheries management areas in Indonesia.

One very much needed fisheries management intervention is to cap fishing effort (number of boats) at current level and to start looking at incentives for effort reductions. A reduction of effort will need to be supported and implemented by government to ensure an even playing field among fishing companies. An improved licensing system and an effort control system based on the Indonesia's mandatory Vessel Monitoring System, using more accurate data on Gross Tonnage for all fishing boats, could be used to better manage fishing effort. Continuous monitoring of trends in the various presented indicators will show in which direction these fisheries are heading and what the effects are of any fisheries management measures in future years.

Government policies and regulations are needed and can be formulated to support fishers and traders with the implementation of improvements across the sector. Our recommendations for supporting government policies in relation to the snapper fisheries include:

- Use scientific (Latin) fish names in fisheries management and in trade.
- Incorporate length-based assessments in management of specific fisheries.
- Develop species-specific length based regulations for these fisheries.
- Implement a controlled access management system for regulation of fishing effort on specific fishing grounds.
- Increase public awareness on unknown species and preferred size classes by species.
- Incorporate traceability systems in fleet management by fisheries and by fishing ground.

Recommendations for specific regulations may include:

- Make mandatory correct display of scientific name (correct labeling) of all traded fish (besides market name).
- Adopt legal minimum sizes for specific or even all traded species, at the length at maturity for each species.
- Make mandatory for each fishing vessel of all sizes to carry a simple GPS tracking device that needs to be functioning at all times. Indonesia already has a mandatory Vessel Monitoring System for vessels larger than 30 GT, so Indonesia could consider expanding this requirement to fishing vessels of smaller sizes.
- Cap fishing effort in the snapper fisheries at the current level and explore options to reduce effort to more sustainable levels.

Table 5.1: SPR values over the period 2016 to 2024 for the top 20 most abundant species in CODRS samples in WPP 715, based on total catch LFD analysis, for all gear types combined and adjusted for relative effort by gear type.

Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024
1	Aphareus rutilans	5	4	8	2	1	NA	NA	NA	NA
2	Pristipomoides filamentosus	8	13	3	3	9	NA	NA	NA	NA
3	Etelis sp.	3	2	2	2	3	NA	NA	NA	NA
4	Lutjanus erythropterus	54	58	19	22	6	NA	NA	NA	NA
5	Paracaesio kusakarii	5	7	3	6	5	NA	NA	NA	NA
6	Pristipomoides multidens	17	25	16	14	20	NA	NA	NA	NA
7	Etelis coruscans	$\overline{7}$	3	1	1	2	NA	NA	NA	NA
8	Lutjanus malabaricus	4	8	1	3	2	NA	NA	NA	NA
9	Pristipomoides sieboldii	0	0	0	0	0	NA	NA	NA	NA
10	Pinjalo lewisi	5	6	5	5	1	NA	NA	NA	NA
11	Etelis radiosus	2	5	5	2	8	NA	NA	NA	NA
12	Paracaesio stonei	8	6	7	4	3	NA	NA	NA	NA
13	Wattsia mossambica	49	48	45	30	NA	NA	NA	NA	NA
14	Lutjanus timorensis	3	$\overline{7}$	13	3	6	NA	NA	NA	NA
15	Erythrocles schlegelii	64	64	40	57	42	NA	NA	NA	NA
16	Paracaesio gonzalesi	4	8	6	3	2	NA	NA	NA	NA
17	Seriola rivoliana	17	18	18	19	NA	NA	NA	NA	NA
18	Epinephelus areolatus	27	24	12	12	NA	NA	NA	NA	NA
19	Pristipomoides typus	16	21	4	9	23	NA	NA	NA	NA
20	Lutjanus argentimaculatus	15	15	14	10	NA	NA	NA	NA	NA

CpUE 2016 2017 2018 2019 2020 2021 2022 2023 2024 Nano Dropline 2.93.71.618.025.8NA NA NA NA Nano Longline $\mathbf{N}\mathbf{A}$ $\mathbf{N}\mathbf{A}$ NA $\mathbf{N}\mathbf{A}$ $\mathbf{N}\mathbf{A}$ $\mathbf{N}\mathbf{A}$ $\mathbf{N}\mathbf{A}$ NA NA Small Dropline 2.9NA NA 3.7NA NA NA NA NA Small Longline 2.99.212.8NA NA NA 3.72.0NA Medium Dropline 2.7 $\mathbf{N}\mathbf{A}$ 3.14.93.11.5NA NA NA Medium Longline 9.22.93.72.012.8NA $\mathbf{N}\mathbf{A}$ NA NA Large Dropline 3.32.61.13.54.7NA $\mathbf{N}\mathbf{A}$ $\mathbf{N}\mathbf{A}$ NA Large Longline NA NA 2.09.212.8NA $\mathbf{N}\mathbf{A}$ NA NA

Table 5.2: CpUE (kg/GT/day) trends by fleet segment for Aphareus rutilans in WPP 715

Table 5.3: CpUE (kg/GT/day) trends by fleet segment for Pristipomoides filamentosus in WPP 715

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	1.3	1.3	0.2	3.4	2.0	NA	NA	NA	NA
Nano Longline	NA								
Small Dropline	1.3	1.3	NA						
Small Longline	1.3	1.3	0.8	2.2	1.3	NA	NA	NA	NA
Medium Dropline	1.1	1.9	1.5	1.7	0.7	NA	NA	NA	NA
Medium Longline	1.3	1.3	0.8	2.2	1.3	NA	NA	NA	NA
Large Dropline	2.3	0.7	0.8	1.0	0.8	NA	NA	NA	NA
Large Longline	NA	NA	0.8	2.2	1.3	NA	NA	NA	NA

Table 5.4: CpUE (kg/GT/day) trends by fleet segment for Etelis sp. in WPP 715

1 (0)	/ •	/	v		0			-	
CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	1.4	2.7	1.5	1.8	0.9	NA	NA	NA	NA
Nano Longline	NA								
Small Dropline	1.4	2.7	NA						
Small Longline	1.4	2.7	2.6	2.3	2.1	NA	NA	NA	NA
Medium Dropline	1.7	3.3	3.4	3.7	3.9	NA	NA	NA	NA
Medium Longline	1.4	2.7	2.6	2.3	2.1	NA	NA	NA	NA
Large Dropline	1.4	2.2	4.2	1.6	1.6	NA	NA	NA	NA
Large Longline	NA	0.0	2.6	2.3	2.1	NA	NA	NA	NA

Table 5.5: CpUE (kg/GT/day) trends by fleet segment for Etelis coruscans in WPP 715

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	0.8	1.5	1.0	2.3	0.4	NA	NA	NA	NA
Nano Longline	NA								
Small Dropline	0.8	1.5	NA						
Small Longline	0.8	1.5	1.1	1.7	1.0	NA	NA	NA	NA
Medium Dropline	0.9	2.0	1.2	1.7	1.6	NA	NA	NA	NA
Medium Longline	0.8	1.5	1.1	1.7	1.0	NA	NA	NA	NA
Large Dropline	0.8	0.8	1.5	0.7	1.1	NA	NA	NA	NA
Large Longline	NA	NA	1.1	1.7	1.0	NA	NA	NA	NA

Table 5.6: CpUE (kg/GT/day) trends by fleet segment for all species in WPP 715

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	12.9	21.1	19.8	42.4	59.4	NA	NA	NA	NA
Nano Longline	NA								
Small Dropline	12.9	21.1	29.0	16.3	24.5	NA	NA	NA	NA
Small Longline	12.9	21.1	18.8	27.7	34.5	NA	NA	NA	NA
Medium Dropline	13.1	27.9	20.8	18.2	15.0	NA	NA	NA	NA
Medium Longline	12.9	21.1	18.8	27.7	34.5	NA	NA	NA	NA
Large Dropline	14.2	11.8	11.8	12.7	12.5	NA	NA	NA	NA
Large Longline	6.7	5.9	18.8	27.7	34.5	NA	NA	NA	NA

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Catch
Acanthuridae	0	0	2	29	16	0	0	0	0	47	0.012
Ariidae	5	4	189	125	66	0	0	0	0	389	0.099
Balistidae	0	0	14	50	24	0	0	0	0	88	0.022
Bramidae	24	0	0	368	0	0	0	0	0	392	0.099
Caesionidae	0	0	5	6	0	0	0	0	0	11	0.003
Carangidae	151	162	626	637	113	0	0	0	0	1689	0.429
Carcharhinidae	0	0	5	0	0	0	0	0	0	5	0.001
Coryphaenidae	0	0	0	3	2	0	0	0	0	5	0.001
Eceneidae	0	0	0	1	0	0	0	0	0	1	0.000
Elopidae	0	0	0	9	0	0	0	0	0	9	0.002
Ephippidae	0	0	21	99	1	0	0	0	0	121	0.031
Epinephelidae	44	17	193	450	27	0	0	0	0	731	0.185
Gempylidae	31	0	0	2	1	0	0	0	0	34	0.009
Haemulidae	2	0	1	3	2	0	0	0	0	8	0.002
Holocentridae	6	1	13	76	1	0	0	0	0	97	0.025
Istiophoridae	0	0	0	0	1	0	0	0	0	1	0.000
Labridae	0	0	0	0	0	0	0	0	0	0	0.000
Lethrinidae	18	13	43	237	9	0	0	0	0	320	0.081
Lutjanidae	41	16	100	435	24	0	0	0	0	616	0.156
Malacanthidae	6	3	6	3	0	0	0	0	0	18	0.005
Mullidae	0	0	1	16	5	0	0	0	0	22	0.006
Nemipteridae	4	0	38	505	24	0	0	0	0	571	0.145
Other	168	238	290	230	23	0	0	0	0	949	0.241
Pomacanthidae	0	0	2	0	0	0	0	0	0	2	0.001
Priacanthidae	3	0	13	81	6	0	0	0	0	103	0.026
Rachycentridae	0	0	0	1	1	0	0	0	0	2	0.001
Rays	4	0	0	8	3	0	0	0	0	15	0.004
Scaridae	0	0	9	10	4	0	0	0	0	23	0.006
Sciaenidae	0	0	0	1	0	0	0	0	0	1	0.000
Scombridae	173	224	223	377	50	0	0	0	0	1047	0.266
Serranidae	8	5	4	7	1	0	0	0	0	25	0.006
Sharks	14	$\overline{7}$	39	45	5	0	0	0	0	110	0.028
Siganidae	0	0	20	9	0	0	0	0	0	29	0.007
Sphyraenidae	45	3	3	14	13	0	0	0	0	78	0.020
Tetraodontidae	0	0	0	2	0	0	0	0	0	2	0.001
Total	747	693	1860	3839	422	0	0	0	0	7561	1.919

Table 5.7: Sample sizes over the period 2016 to 2024 for the others species in WPP 715 Dropline

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Catch
Acanthuridae	0	0	0	0	0	0	0	0	0	0	0.000
Ariidae	0	0	0	0	0	0	0	0	0	0	0.000
Balistidae	0	0	0	1	1	0	0	0	0	2	0.001
Bramidae	0	0	0	0	0	0	0	0	0	0	0.000
Caesionidae	0	0	0	19	0	0	0	0	0	19	0.005
Carangidae	3	1	0	5	9	0	0	0	0	18	0.005
Carcharhinidae	0	0	0	0	0	0	0	0	0	0	0.000
Coryphaenidae	0	0	0	0	0	0	0	0	0	0	0.000
Eceneidae	0	0	0	0	0	0	0	0	0	0	0.000
Elopidae	0	0	0	0	0	0	0	0	0	0	0.000
Ephippidae	0	0	0	0	0	0	0	0	0	0	0.000
Epinephelidae	3	7	0	53	7	0	0	0	0	70	0.018
Gempylidae	0	0	0	0	0	0	0	0	0	0	0.000
Haemulidae	0	0	0	1	0	0	0	0	0	1	0.000
Holocentridae	0	0	0	0	2	0	0	0	0	2	0.001
Istiophoridae	0	0	0	0	0	0	0	0	0	0	0.000
Labridae	0	0	0	1	1	0	0	0	0	2	0.001
Lethrinidae	0	3	0	12	29	0	0	0	0	44	0.011
Lutjanidae	0	0	0	8	38	0	0	0	0	46	0.012
Malacanthidae	0	0	0	0	0	0	0	0	0	0	0.000
Mullidae	0	0	0	3	3	0	0	0	0	6	0.002
Nemipteridae	0	0	0	0	4	0	0	0	0	4	0.001
Other	2	12	2	0	1	0	0	0	0	17	0.004
Pomacanthidae	0	0	0	0	0	0	0	0	0	0	0.000
Priacanthidae	0	0	0	2	19	0	0	0	0	21	0.005
Rachycentridae	0	0	0	0	0	0	0	0	0	0	0.000
Rays	1	0	0	0	0	0	0	0	0	1	0.000
Scaridae	0	0	0	1	0	0	0	0	0	1	0.000
Sciaenidae	0	0	0	0	0	0	0	0	0	0	0.000
Scombridae	11	1	0	1	2	0	0	0	0	15	0.004
Serranidae	0	0	0	0	0	0	0	0	0	0	0.000
Sharks	0	4	9	0	0	0	0	0	0	13	0.003
Siganidae	0	0	0	0	0	0	0	0	0	0	0.000
Sphyraenidae	1	0	0	0	0	0	0	0	0	1	0.000
Tetraodontidae	0	0	0	0	0	0	0	0	0	0	0.000
Total	21	28	11	107	116	0	0	0	0	283	0.072

Table 5.8: Sample sizes over the period 2016 to 2024 for the others species in WPP 715 Longline

6 References

Australian Surveying & Land Information Group (AUSLIG), 1996. Commonwealth Department of Industry Science and Resources. MAP 96/523.21.1.

Ehrhardt, N.M. and Ault, J.S. 1992. Analysis of two length-based mortality models applied to bounded catch length frequencies. Trans. Am. Fish. Soc. 121:115-122.

Froese, R. 2004. Keep it simple: three indicators to deal with overfishing. Fish and Fisheries 5: 86-91.

Froese, R. and Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 56:758-773.

Froese, R. and D. Pauly, (eds.) 2000. FishBase 2000: concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines. 344 p.

Froese, R., Winker, H., Gascuel, D., Sumaila, U.R. and Pauly, D. 2016. Minimizing the impact of ?shing. Fish and Fisheries DOI: 10.1111/faf.12146.

Fujita, R., Karr, K., Apel, A. and Mateo, I. 2012. Guide to the use of Froese sustainability indicators to assess and manage data-limited fish stocks. Oceans Program, Environmental Defense Fund, Research and Development Team.

Martinez-Andrade F., 2003. A comparison of life histories and ecological aspects among snappers (Pisces: lutjanidae). Dissertation http://etd.lsu.edu/docs/available/etd-1113103-230518/unrestricted/Martinez-Andrade_dis.pdf

Meester G.A., Ault J.S., Smith S.G., Mehrotra A. 2001. An integrated simulation modeling and operations research approach to spatial management decision making. Sarsia 86:543-558.

Prescott, V., 2000. East Timor's Potential Maritime Boundaries. East Timor and its Maritime Dimensions: Legal and Policy Implications for Australia, Australian Institute of International Affairs, Canberra.

Quinn, T.J. and Deriso R.B. 1999. Quantitative Fish Dynamics. New York: Oxford University Press.

Vasilakopoulos, P., O'Neill, F. G. and Marshall, C. T. 2011. Misspent youth: does catching immature fish affect fisheries sustainability? - ICES Journal of Marine Science, 68: 1525-1534.

Wallace, R.K. and Fletcher, K.M. 2001. Understanding Fisheries Management: A Manual for understanding the Federal Fisheries Management Process, Including Analysis of the 1996 Sustainable Fisheries Act. Second Edition. Auburn University and the University of Mississippi. 62 pp.

Zhang, C.I., Kim, S., Gunderson, D., Marasco, R., Lee, J.B., Park, H.W. and Lee, J.H. 2009. An ecosystem-based fisheries assessment approach for Korean fisheries. Fisheries Research 100: 26-41.